matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLänge einer Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Länge einer Kurve
Länge einer Kurve < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Kurve: Frage zum Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:56 Mi 24.02.2016
Autor: mathelernender

Aufgabe
Gegeben sei f(x) = [mm] a*cosh(\bruch{x}{a}) [/mm] = [mm] \bruch{a}{2}*(exp(\bruch{x}{a}) [/mm] + [mm] exp(-\bruch{x}{a})) [/mm]
mit a > 0 eine Kurve im [mm] \IR^{2}. [/mm]
Berechne die Länge vom Punkt [mm] A=(0,f(0))^{T} [/mm] bis [mm] P=(s,f(s))^{T} [/mm] für beliebige s > 0.




Hallo zusammen,
ich habe eine Frage zu der o.g. Aufgabe und zu meinem Ansatz:

Wir haben die Länge einer Kurve definiert als:
[mm] \integral_{a}^{b}{\parallel f'(x)\parallel dx}, wobei\parallel*\parallel [/mm] die 2-Norm ist.

Also zu meinem Ansatz:

Zunächst brauche ich die Ableitung von f:
f'(x) = [mm] \bruch{1}{2}*(exp(\bruch{x}{a}) [/mm] - [mm] exp(-\bruch{x}{a})) [/mm]

Dann die 2-Norm der 1. Ableitung: (Hier kommt jetzt auch mein Problem)

ich möchte ja zu den Paaren [mm] (0,f(0))^{T} [/mm]  und [mm] (s,f(s))^{T} [/mm] die Länge berechnen: Also wollte ich die Norm wie folgt berechnen:

[mm] \parallel [/mm] (x', f'(x)) [mm] \parallel [/mm] = [mm] \wurzel{1 + (\bruch{1}{2}*(exp(\bruch{x}{a}) - exp(-\bruch{x}{a}))^2)} [/mm]

Aber das ganze kann man in meinen Augen nicht mehr wirklich zusammenfassen, geschweige denn im nächsten Schritt ordentlich integrieren...stimmt mein Ansatz überhaupt?

Viele Grüße,
mathelernender

        
Bezug
Länge einer Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Mi 24.02.2016
Autor: felixf

Moin!

> Gegeben sei f(x) = [mm]a*cosh(\bruch{x}{a})[/mm] =
> [mm]\bruch{a}{2}*(exp(\bruch{x}{a})[/mm] + [mm]exp(-\bruch{x}{a}))[/mm]
> mit a > 0 eine Kurve im [mm]\IR^{2}.[/mm]
>  Berechne die Länge vom Punkt [mm]A=(0,f(0))^{T}[/mm] bis
> [mm]P=(s,f(s))^{T}[/mm] für beliebige s > 0.
>  
>
>
> Hallo zusammen,
>  ich habe eine Frage zu der o.g. Aufgabe und zu meinem
> Ansatz:
>  
> Wir haben die Länge einer Kurve definiert als:
>  [mm]\integral_{a}^{b}{\parallel f'(x)\parallel dx}, wobei\parallel*\parallel[/mm]
> die 2-Norm ist.
>  
> Also zu meinem Ansatz:
>  
> Zunächst brauche ich die Ableitung von f:
>  f'(x) = [mm]\bruch{1}{2}*(exp(\bruch{x}{a})[/mm] -
> [mm]exp(-\bruch{x}{a}))[/mm]
>  
> Dann die 2-Norm der 1. Ableitung: (Hier kommt jetzt auch
> mein Problem)
>  
> ich möchte ja zu den Paaren [mm](0,f(0))^{T}[/mm]  und [mm](s,f(s))^{T}[/mm]
> die Länge berechnen: Also wollte ich die Norm wie folgt
> berechnen:
>  
> [mm]\parallel[/mm] (x', f'(x)) [mm]\parallel[/mm] = [mm]\wurzel{1 + (\bruch{1}{2}*(exp(\bruch{x}{a}) - exp(-\bruch{x}{a}))^2)}[/mm]
>  
> Aber das ganze kann man in meinen Augen nicht mehr wirklich
> zusammenfassen,

Oh doch, das geht gut :) Verwende dazu doch [mm] $(\cosh [/mm] x)' = [mm] \sinh [/mm] x$ und [mm] $\cosh^2 [/mm] x - [mm] \sinh^2 [/mm] x = 1$, damit kannst du ziemlich gut sehen wie das Ergebnis aussehen sollte.

> geschweige denn im nächsten Schritt
> ordentlich integrieren...stimmt mein Ansatz überhaupt?

Der Ansatz stimmt.

LG Felix


Bezug
                
Bezug
Länge einer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Mi 24.02.2016
Autor: mathelernender

Dankeschön Felix,

klassischer Fall von Additionstheoremen...

THX!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]