matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationLänge der Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Länge der Kurve
Länge der Kurve < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge der Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 So 26.06.2011
Autor: rawberrie

Aufgabe
Berechnen Sie die Länge der Kurve welche für t [mm] \in [/mm] [0,3] gegeben ist durch t--> [mm] \vektor{\bruch{1}{2}(t^2) \\ \bruch{1}{3}(t^\bruch{3}{2})) \\ 1} [/mm]

Hab das so gemacht,
zuerst x,y,z, bestimmt über die ableitungen:
x=t   y= [mm] \bruch{1}{2}t^\bruch{1}{2} [/mm]   z=0

L= [mm] \integral_{0}^{3}{\wurzel{t^2+\bruch{1}{2}t^\bruch{1}{2}^2} dt} [/mm] =

L= [mm] \integral_{0}^{3}{\wurzel{t^2+\bruch{1}{4}t} dt} [/mm] =

dann bin ich hergegangen und hab mir gedacht ich könnte den Term [mm] t^2 [/mm] + [mm] \bruch{1}{4}t [/mm] auch folgend anschreiben

[mm] t^2 [/mm] + [mm] \bruch{1}{4}t =(t+\bruch{1}{8})^2 [/mm] - [mm] \bruch{1}{64} [/mm]

und dann Substituieren für u = [mm] t+\bruch{1}{8} [/mm]

dann hätt ich folgendes dastehen:
L= [mm] \integral_{0}^{3}{\wurzel{u^2-\bruch{1}{64}t} dt} [/mm] =
Und dann einfach sagen mein [mm] \bruch{1}{64} [/mm] ist auch nur eine andere Variable .Sprich [mm] z=\bruch{1}{8} [/mm]      

[mm] z^2=\bruch{1}{64} [/mm]

das wäre dann:
L= [mm] \integral_{0}^{3}{\wurzel{u^2-z^2} dt} [/mm] =
Dieses Integral kann ich dann mit meiner Integraltabelle aus dem Bartsch einfach auflösen, allerdings ist die Lösung relativ lang , die wäre nämlich:
[mm] \bruch{u}{2}*\wurzel{u^2-z^2}-\bruch{z^2}{2}+arccosh|\bruch{u}{z}|*sgn [/mm] u + C

Wenn ich da dann noch die Grenzen einsetze wird die Rechnung relativ lang für die Punkte die man dafür noch bekommt, jetzt wäre meine Frage ob es einen einfacheren Weg gibt, oder ob das so schon stimmt?
danke,
lg

        
Bezug
Länge der Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 So 26.06.2011
Autor: schachuzipus

Hallo rawberrie,


> Berechnen Sie die Länge der Kurve welche für t [mm]\in[/mm] [0,3]
> gegeben ist durch t--> [mm]\vektor{\bruch{1}{2}(t^2) \\ \bruch{1}{3}(t^\bruch{3}{2})) \\ 1}[/mm]
>  
> Hab das so gemacht,
>  zuerst x,y,z, bestimmt über die ableitungen:
>  x=t   y= [mm]\bruch{1}{2}t^\bruch{1}{2}[/mm]   z=0 [ok]
>  
> L=
> [mm]\integral_{0}^{3}{\wurzel{t^2+\bruch{1}{2}t^\bruch{1}{2}^2} dt}[/mm]
> =
>
> L= [mm]\integral_{0}^{3}{\wurzel{t^2+\bruch{1}{4}t} dt}[/mm] = [ok]
>
> dann bin ich hergegangen und hab mir gedacht ich könnte
> den Term [mm]t^2[/mm] + [mm]\bruch{1}{4}t[/mm] auch folgend anschreiben
>  
> [mm]t^2[/mm] + [mm]\bruch{1}{4}t =(t+\bruch{1}{8})^2[/mm] - [mm]\bruch{1}{64}[/mm] [ok]
>  
> und dann Substituieren für u = [mm]t+\bruch{1}{8}[/mm]
>
> dann hätt ich folgendes dastehen:
>  L= [mm]\integral_{0}^{3}{\wurzel{u^2-\bruch{1}{64}t} dt}[/mm] =

[haee] Verstehe ich nicht, wieso ersetzt du das Differential nich mit?

Und wieso steht da $-1/64t$ ?

>  Und dann einfach sagen mein [mm]\bruch{1}{64}[/mm] ist auch nur
> eine andere Variable .Sprich [mm]z=\bruch{1}{8}[/mm]      
>
> [mm]z^2=\bruch{1}{64}[/mm]
>  
> das wäre dann:
> L= [mm]\integral_{0}^{3}{\wurzel{u^2-z^2} dt}[/mm] =
>  Dieses Integral kann ich dann mit meiner Integraltabelle
> aus dem Bartsch einfach auflösen, allerdings ist die
> Lösung relativ lang , die wäre nämlich:
>  
> [mm]\bruch{u}{2}*\wurzel{u^2-z^2}-\bruch{z^2}{2}+arccosh|\bruch{u}{z}|*sgn[/mm]
> u + C
>  
> Wenn ich da dann noch die Grenzen einsetze wird die
> Rechnung relativ lang für die Punkte die man dafür noch
> bekommt, jetzt wäre meine Frage ob es einen einfacheren
> Weg gibt, oder ob das so schon stimmt?

Hmm, klammere hier: [mm]\sqrt{\left(x+1/8\right)^2-1/64}[/mm] noch [mm]\frac{1}{64}[/mm] aus:

[mm]...=1/8*\sqrt{(8t+1)^2-1}[/mm]

Dann kannst du in Analogie zum Integral [mm]\int{\sqrt{x^2-1} \ dx}[/mm], das du mit der Substitution [mm]x=\cosh(u)[/mm] erschlagen kannst, bei deinem Integral substituieren:

[mm]8t+1=\cosh(u)[/mm], also [mm]t=\frac{\cosh(u)-1}{8}[/mm]


>  danke,
>  lg

Gruß

schachuzipus


Bezug
        
Bezug
Länge der Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 So 26.06.2011
Autor: fred97

Noch etwas: wenn Du substituierst, substituiere auch die Integrationsgrenzen !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]