matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLänge der
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Länge der
Länge der < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge der: Archimedischen Spirale
Status: (Frage) beantwortet Status 
Datum: 20:58 Fr 05.09.2008
Autor: sommersonne

Aufgabe
Berechnen Sie die Länge der Archimedischen Spirale [mm] \gamma :[0,2\pi]->\IR^2, [/mm]
[mm] \gamma(t)=(c*t*(cos(t)),c*t*sin(t)), [/mm]
wobei c>0.

Hallo,

ich habe nur den Anfang:
[mm] \gamma(t)=(c*t*(cos(t)),c*t*sin(t)) [/mm]
[mm] \gamma'(t)= [/mm] (-sin(t)ct, cos(t)ct)+ (cos(t)*c,sin(t)*c)

[mm] \parallel\gamma'(t)\parallel_2 [/mm] = [mm] \wurzel{(-sin(t)ct)^2+ (cos(t)ct)^2 + (cos(t)*c)^2 +(sin(t)*c)^2)}= [/mm]
[mm] \wurzel{(ct)^2 + c^2} [/mm]

Hmm, ich glaube nicht dass das in die richtige Richtung geht...

Liebe Grüße
sommersonne

        
Bezug
Länge der: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Fr 05.09.2008
Autor: angela.h.b.


> Berechnen Sie die Länge der Archimedischen Spirale [mm]\gamma :[0,2\pi]->\IR^2,[/mm]
>  
> [mm]\gamma(t)=(c*t*(cos(t)),c*t*sin(t)),[/mm]
>  wobei c>0.
>  Hallo,
>  
> ich habe nur den Anfang:
>  [mm]\gamma(t)=(c*t*(cos(t)),c*t*sin(t))[/mm]
> [mm]\gamma'(t)=[/mm] (-sin(t)ct, cos(t)ct)+ (cos(t)*c,sin(t)*c)

Hallo,

ich glaube, Du tätest Dir etwas leichter, wenn du die vektoren als Spalten schreiben würdest. Es sit zwar mühsam, aber um Klassen übersichtlicher - für meinen geschmack.

Du hast also [mm] \gamma(t)=\vektor{c*t*(cos(t)\\c*t*sin(t)} [/mm] mit [mm] t\in [0,2\pi] [/mm]

es ist [mm] \gamma'(t)=ct\vektor{-\sin(t)\\ \cos(t)} +c\vektor{\cos(t)\\ \sin(t)}=c\vektor{-t*\sin(t)+\cos(t)\\ t*cos(t)+\sin(t)}, [/mm] und das ist auch Dein Ergebnis.

Für die Bogenlänge mußt Du nun über die Wurzel aus der Summe der Quadrate der Komponenten summieren.

Da unten hast du jetzt irgendwie das Integral vergessen, ich hoffe, auch, daß Du bim Quadrieren der Komponenten die binomische Formel beachtet hast und daß das nicht nur zufällig richtig ist.

Jedenfalls muß jetzt integriert werden.

Gruß v. Angela


>  
> [mm]\parallel\gamma'(t)\parallel_2[/mm] = [mm]\wurzel{(-sin(t)ct)^2+ (cos(t)ct)^2 + (cos(t)*c)^2 +(sin(t)*c)^2)}=[/mm]
>  
>  [mm]\wurzel{(ct)^2 + c^2}[/mm]
>  
> Hmm, ich glaube nicht dass das in die richtige Richtung
> geht...
>  
> Liebe Grüße
>  sommersonne


Bezug
                
Bezug
Länge der: Teilen duch Null?
Status: (Frage) beantwortet Status 
Datum: 10:49 Sa 06.09.2008
Autor: sommersonne

Hallo,

danke für deine Antwort.

Wenn man das Integral
[mm] L(\gamma)=\integral_{0}^{2\pi}{\wurzel{c^2t^2+c^2} dx} [/mm] ausrechnet, hat man nur ein Problem, nämlich das verbotene "durch Null teilen":
[mm] L(\gamma)=\integral_{0}^{2\pi}{\wurzel{c^2t^2+c^2} dx} [/mm] = [mm] [\bruch{(c^2t^2 + c^2)^{3/2}}{(3/2) *2c^2t}] [/mm] =  [mm] \bruch{(c^2(2\pi)^2 + c^2)^{3/2}}{(3/2) *2c^2*2\pi} [/mm] -  [mm] \bruch{( c^2)^{3/2}}{(3/2) *2c^2*0} [/mm]


Liebe Grüße
sommersonne

Bezug
                        
Bezug
Länge der: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Sa 06.09.2008
Autor: angela.h.b.


> Wenn man das Integral
>  [mm]L(\gamma)=\integral_{0}^{2\pi}{\wurzel{c^2t^2+c^2} dx}[/mm]
> ausrechnet, hat man nur ein Problem, nämlich das verbotene
> "durch Null teilen":
>  [mm]L(\gamma)=\integral_{0}^{2\pi}{\wurzel{c^2t^2+c^2} dx}[/mm] =
> [mm][\bruch{(c^2t^2 + c^2)^{3/2}}{(3/2) *2c^2t}][/mm] =  
> [mm]\bruch{(c^2(2\pi)^2 + c^2)^{3/2}}{(3/2) *2c^2*2\pi}[/mm] -  
> [mm]\bruch{( c^2)^{3/2}}{(3/2) *2c^2*0}[/mm]
>  

Hallo,

erstmal völlig unabhängig vom Integral: Du solltest unbedingt ein bißchen Bruchrechnen und Termumformungen üben.

Sowas [mm] [\bruch{(c^2t^2 + c^2)^{3/2}}{(3/2) *2c^2t}] [/mm] ist so unnötig kompliziert, und damit fehlerträchtig.

Du kannst hier Konstanten herausziehen: [mm] \bruch{(c^2t^2 + c^2)^{3/2}}{(3/2) *2c^2t}=\bruch{2c^3}{3*2c^2}*\bruch{(t^2 + 1)^{3/2}}{ t}=\bruch{c}{3}*\bruch{(t^2 + 1)^{3/2}}{ t} [/mm]

Nun könntest Du dies mal ableiten und schauen, ob wirklich [mm] \wurzel{c^2t^2+c^2} [/mm] herauskommt - ich habe da so meine Zweifel...


Zunächst einmal wurde ich mir [mm] \integral_{0}^{2\pi}{\wurzel{c^2t^2+c^2} dx} [/mm] schreiben als [mm] c\integral_{0}^{2\pi}{\wurzel{t^2+1} dx}, [/mm] das sieht doch auch schon freundlicher aus.

zur Lösung dieses Integrals gibt es wahrscheinlich mehrere Möglichkeiten, eine, die nicht funktioniert, sag' ich Dir: Stammfunktion der Wurzelfunktion suchen, [mm] t^2+1 [/mm] einsetzen, und als Korrektur durch die Ableitung von [mm] t^2+1 [/mm] teilen - und genau dieses "Verfahren" hast Du oben verwendet.


Für [mm] c\integral_{0}^{2\pi}{\wurzel{t^2+1}} [/mm] dx wirst Du wohl substituieren müssen, eventuell  geht's auch partiell, wenn man's geschickt einfädelt, da bin ich mir grad nicht so sicher.
(Alternativ könnte man natürlich im Bronstein nachgucken - wenn Ihr das dürft.)

Gruß v. Angela

Bezug
                                
Bezug
Länge der: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Sa 06.09.2008
Autor: sommersonne

Hallo,

danke für deine Antwort!
Du hast recht, ich sollte mal wieder die Schulmathematik üben... Aber jetzt komme ich weiter.

Danke.

Liebe Grüße
sommersonne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]