matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteL'hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - L'hospital
L'hospital < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'hospital: Funktion
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:23 Mo 12.06.2006
Autor: Aeryn

Aufgabe
Gegeben ist die Funktion f(x)= [mm] \bruch{sin x}{x} [/mm]
a) Berechnen Sie die erste Ableitung g'(x)
b) Berechnen Sie [mm] \limes_{x\rightarrow 0} [/mm]
c) Für welche Werte von z ist die folgende Funktion g(x) stetig im Punkt x=0
g(x)= [mm] \bruch{sin x}{x}, [/mm] für  [mm] x\ge [/mm] 0  
     5x+z, für  x<0  

Meine Lösung bisher:
a) [mm] g'(x)=\bruch{cos x}{1} [/mm]
b) [mm] \limes_{x\rightarrow 0}g(x)=\limes_{x\rightarrow 0}\bruch{cos x}{1}=1 [/mm]
c) [mm] \limes_{x\rightarrow 0-} [/mm] g(x) = [mm] \limes_{x\rightarrow 0-} [/mm] 5x+z = z
[mm] \limes_{x\rightarrow 0+} [/mm] g(x) = [mm] \limes_{x\rightarrow 0+} \bruch{sin x}{x} [/mm] = 0
z=0
Bemerkung: Limes x ->0, wird nicht ordentlich angezeigt

        
Bezug
L'hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 12.06.2006
Autor: leduart

Hallo Aeryn
Bemerkung: es fehlen die nette Worte

> Gegeben ist die Funktion f(x)= [mm]\bruch{sin x}{x}[/mm]
>  a)
> Berechnen Sie die erste Ableitung g'(x)
>  b) Berechnen Sie [mm]\limes_{x\rightarrow 0}[/mm]

Von Was?

>  c) Für welche Werte von z ist die folgende Funktion g(x)
> stetig im Punkt x=0
>  g(x)= [mm]\bruch{sin x}{x},[/mm] für  [mm]x\ge[/mm] 0  
> 5x+z, für  x<0
> Meine Lösung bisher:
>  a) g'(x)= [mm]\bruch[/mm] {cos x}{1}

falsch, wenn   g(x)= [mm]\bruch{sin x}{x},[/mm]
du sollst doch g' bilden, oder wirklich L'Hopital? Wenn g' dann Quotientenregel!

>  b) [mm]\limes_{x\rightarrow 0}[/mm] g(x)= [mm]\limes_{x\rightarrow 0} \bruch{cos x}{1}[/mm]
> = 1
>  c) [mm]\limes_{x\rightarrow 0-}[/mm] g(x) =
> [mm]\limes_{x\rightarrow 0-}[/mm] 5x+z = z
>  [mm]\limes_{x\rightarrow 0+}[/mm] g(x) = [mm]\limes_{x\rightarrow\0+} \bruch{sin x}{x}[/mm]
> = 0

Oben hast du ausgerechnet, dass der GW 1 ist!
[mm] g(x)=\bruch{sinx}{x} [/mm] ist in x=0 nicht stetig. deshalb auch nicht die ganze Funktion mit z=1, es se denn es hiesse:
[mm] g(x)=\bruch{sinx}{x} [/mm] für x>0
       =5x+z für x [mm] \le [/mm] 0
Dann wär das richtig für z=1

>  z=0
>  Bemerkung: Limes x ->0, wird nicht ordentlich angezeigt

Du hast einen Fehler gemacht und nicht 0 geschrieben sondern \  0, das \ ist aber nur für Sonderzeichen zuständig, und ignoriert was es nicht kenn!
(wahrscheinlich cut and paste und nur infty durch 0 ersetzt!)
Gruss leduart

Bezug
                
Bezug
L'hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Mo 12.06.2006
Autor: Aeryn

Hallo!
Dh die 1. Ableitung von f(x), also f'(x)= [mm] \bruch{cos x}{1}, [/mm] ist nicht gleich g'(x)?
und zu frage b) [mm] \limes_{x\rightarrow 0} [/mm] g(x), sorry.


Bezug
                        
Bezug
L'hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mo 12.06.2006
Autor: leduart

Hallo
Quotientenregel: [mm] $F=\bruch{f}{g}$ [/mm]  dann gilt [mm] $F'=\bruch{f'*g-f*g'}{g^2}$ [/mm]
bei dir f=sinx  g=x  wenn du wirklich [mm] \bruch{sinx}{x} [/mm] ableiten sollst!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]