matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationL'Hospital
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - L'Hospital
L'Hospital < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Fr 03.09.2010
Autor: moerni

Hallo.

Ich habe eine Frage zu L'Hosptial.

Gegeben habe ich die Funktion D:[0,T] [mm] \to \mathbb{R} [/mm]

D(t)= [mm] \begin{cases} \frac{|u(t)-v(t)|}{t}, t \in (0,T], T>0 \\ 0 , t=0 \end{cases} [/mm]

Zu den Funktionen u(t), v(t) gibts noch ein paar Eigenschaften, die aber für meine Frage nicht so wichtig sind. Die Aufgabe ist nun zu zeigen, dass D stetig ist. Da reichts ja zu zeigen, dass D in 0 stetig ist. Da würde ich gerne L'Hospital anwenden. Aber anscheinend ist es so, dass ich hier:

[mm] lim_{t\to 0} \frac{|u(t)-v(t)|}{t} [/mm]

den L'Hospital nicht anwenden darf, aber hier schon:


[mm] lim_{t\to 0} \frac{u(t)-v(t)}{t} [/mm]

Warum?

Anschließend ist dann anscheinend die Begründung: da D ohne Betrag stetig in 0 ist, ist dann auch D mit Betrag stetig in 0. Kann mir das jemand vielleicht noch etwas erläutern?

Über eine Hilfe wäre ich sehr dankbar,
lg moerni



        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Fr 03.09.2010
Autor: Gonozal_IX

Huhu,

> Zu den Funktionen u(t), v(t) gibts noch ein paar
> Eigenschaften, die aber für meine Frage nicht so wichtig
> sind.

Da irrst du dich aber gewaltig.
Was sind denn die Voraussetzungen für L'Hospital?
Was weißt du über die Betragsfunktion und welche Eigenschaft für L'Hospital erfüllt diese nicht?
Denk da mal drüber nach, vielleicht kommst dann selbst drauf ;-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]