matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLU- Zerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - LU- Zerlegung
LU- Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LU- Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:11 Di 29.05.2012
Autor: mathemaus2010

Aufgabe
Bestimmen Sie eine LU - Zerlegung der Matrix

A = [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } \in R^{4,4} [/mm] .

Hallo liebes Forum,

ich hoffe ihr könnt mir helfen, da ich den Fehler nicht sehe. Ich mache das mal so, wie ich das verstanden habe:

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] G_{1,2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


[mm] --->G_{1,3}(-5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] M_{2}(-1/4) [/mm]


[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,3}(5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,4}(-1/2) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & 1/8 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & -3/2 & 9/8 } [/mm]

---> [mm] G_{3,4}(1/4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

Jetzt müsste ja eigentlich

L =  [mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm]  und

U =  [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]  sein, aber wenn ich L*U berechne, dann kommt

[mm] \pmat{ 1 & 2 & 3 & 0 \\ 1 & 1/2 & 9/4 & 0,06 \\ 0 & -5/2 & 9/4 & -0,94 \\ -1/2 & -1,37 & -0,56 & 0,55 } [/mm] heraus und dies hat ja nun wenig mit A zu tun.

Das ist mein Problem, dass ich einfach nicht A heraus bekomme, wobei ich meiner Ansicht nach alles richtig mache. Also wo ist der Fehler?

Liebe Grüße

Mathemaus


Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.

        
Bezug
LU- Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:21 Di 29.05.2012
Autor: mathemaus2010

Naja gut ich habe noch vergessen, dass L auf der Diagonalen ausschließlich einsen haben muss, dann mache ich halt noch eine weitere Umformung :

---> [mm] M_{2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und
[mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

aber auch wenn ich jetzt beide multipliziere, kommt  

[mm] \pmat{ 1 & 2 & 3 & 0 \\ -4 & -16 & -24 & 1 \\ 0 & 10 & 21 & -2,5 \\ -0,5 & 0,5 & 2,25 & 0,31 } [/mm] und das hat ja auch nichts mit A gemein =( .

Bezug
        
Bezug
LU- Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 29.05.2012
Autor: wieschoo

Hi

Multiplizier mal schon nach dem ersten Schritt beide Matrizen.
Und schau dort mal nach dem Vorzeichen.

wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]