matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLR-Zerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - LR-Zerlegung
LR-Zerlegung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LR-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 So 23.11.2008
Autor: Joan2

Aufgabe
A = [mm] \pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 } [/mm]

a) Bestimme die LR-Zerlegung mit Hilfe der Spaltenpivotisierung
b) Bestimme die LR-Zerlung ohne Pivotisierung  

Ich habe die Aufgaben so gelöst:

a)

[mm] \pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 } \gdw \pmat{ 2 & 4 &-1\\ 1 & 2 & -1\\1&3&1 } [/mm]

2.Zeile und 3.Zeile jeweils  [mm] -\bruch{1}{2}* [/mm] 1.Zeile

[mm] \gdw \pmat{ 2 & 4 &-1 \\ 0 &0 & -\bruch{1}{2}\\0&1&\bruch{3}{2}} [/mm]

Zeilenvertauschung: 2.Z mit 3.Z

[mm] \Rightarrow \pmat{ 2 & 4 &-1\\ 0 & 1 & \bruch{3}{2}\\0&0&-\bruch{1}{2}} [/mm]    = R

[mm] \Rightarrow [/mm] L= [mm] \pmat{ 1 & 0 & 0 \\ -\bruch{1}{2}& 1 &0\\ -\bruch{1}{2} & 0 &1 } [/mm]


b)

[mm] \pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 } [/mm]

2.Z -  2*1.Z und 3.Z - 1*1.Z

[mm] \Rightarrow \pmat{ 1 & 2 & -1 \\ 0 & 0 &1\\0&1&2 } [/mm]

Zeilenvertauschung: 2.Z mit 3.Z

[mm] \Rightarrow \pmat{ 1 & 2 & -1 \\ 0 & 1 &2\\0&0&1 } [/mm]  = R

[mm] \Rightarrow [/mm] L = [mm] \pmat{ 1 & 0 & 0 \\ 2 & 1 &0\\ 1& 0 &1 } [/mm]


Eigentlich müssten die LR-Zerlegung gleich sein, oder?? Ich weiß nicht wo ich falsch gedacht habe.


Für einen Tipp wäre ich sehr dankbar


Liebe Grüße
Joan


        
Bezug
LR-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 So 23.11.2008
Autor: zetamy


> A = [mm]\pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 }[/mm]
>  
> a) Bestimme die LR-Zerlegung mit Hilfe der
> Spaltenpivotisierung
>  b) Bestimme die LR-Zerlung ohne Pivotisierung
> Ich habe die Aufgaben so gelöst:
>  
> a)
>
> [mm]\pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 } \gdw \pmat{ 2 & 4 &-1\\ 1 & 2 & -1\\1&3&1 }[/mm]
>
> 2.Zeile und 3.Zeile jeweils  [mm]-\bruch{1}{2}*[/mm] 1.Zeile
>  
> [mm]\gdw \pmat{ 2 & 4 &-1 \\ 0 &0 & -\bruch{1}{2}\\0&1&\bruch{3}{2}}[/mm]
>  
> Zeilenvertauschung: 2.Z mit 3.Z
>  
> [mm]\Rightarrow \pmat{ 2 & 4 &-1\\ 0 & 1 & \bruch{3}{2}\\0&0&-\bruch{1}{2}}[/mm]
>    = R
>  
> [mm]\Rightarrow[/mm] L= [mm]\pmat{ 1 & 0 & 0 \\ -\bruch{1}{2}& 1 &0\\ -\bruch{1}{2} & 0 &1 }[/mm]

Wenn du pivotisierst, musst du auch die Pivotmatrix mitführen! Am Anfang hast du die Zeilen in der Reihenfolge [mm] $\vektor{1 \\ 2 \\ 3}$. [/mm] Durch deine zweimalige Zeilenvertauschung erhälst du die Reihenfolge [mm] $\vektor{2 \\ 3 \\ 1}$. [/mm] Folglich sieht deine Pivotmatrix so aus:

[mm] $\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0}$. [/mm] Wenn du jetzt die von dir ausgerechneten Matrixen L und R multiplizierst erhälst du die pivotisierte Matrix [mm] $P\cdot [/mm] A$, also $ [mm] L\cdot [/mm] R = [mm] P\cdot [/mm] A$.

ABER: In der Aufgabe stand Spaltenpivotisierung, du hast Zeilen pivotisiert!



> b)
>  
> [mm]\pmat{ 1 & 2 & -1 \\ 2 & 4 &-1\\1&3&1 }[/mm]
>
> 2.Z -  2*1.Z und 3.Z - 1*1.Z
>  
> [mm]\Rightarrow \pmat{ 1 & 2 & -1 \\ 0 & 0 &1\\0&1&2 }[/mm]
>
> Zeilenvertauschung: 2.Z mit 3.Z

Du sollst hier eine Lösung ohne Pivotisierung angeben! Also keine Zeilen/Spaltenvertauschung.

>  
> [mm]\Rightarrow \pmat{ 1 & 2 & -1 \\ 0 & 1 &2\\0&0&1 }[/mm]  = R
>  
> [mm]\Rightarrow[/mm] L = [mm]\pmat{ 1 & 0 & 0 \\ 2 & 1 &0\\ 1& 0 &1 }[/mm]
>  
>
> Eigentlich müssten die LR-Zerlegung gleich sein, oder?? Ich
> weiß nicht wo ich falsch gedacht habe.
>  
>
> Für einen Tipp wäre ich sehr dankbar
>  
>
> Liebe Grüße
>  Joan
>  


Bezug
                
Bezug
LR-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 23.11.2008
Autor: Joan2

Danke erstmalfür die Hilfe.
Aber es müssen bei a) und b) letztendlich dieselben LR- Matrizen herauskommen, oder?

Bezug
                        
Bezug
LR-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 23.11.2008
Autor: zetamy

Bei Teil b) ist deine L Matrix falsch. Korrekt lautet sie [mm] $\pmat{1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1}$. [/mm]


> Danke erstmalfür die Hilfe.
> Aber es müssen bei a) und b) letztendlich dieselben LR-
> Matrizen herauskommen, oder?

Nein, da du in Teil bei eine andere Pivotisierung gewählt hast, ist die Pivotmatrix von der in a) verschieden, also sind auch L und R von denen in a) verschieden.

Die Pivotmatrix in b) ist: [mm] $\pmat{1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0}$. [/mm]


Bezug
                                
Bezug
LR-Zerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:44 So 23.11.2008
Autor: Joan2

Ich dachte die L-Matrix erhält man durch:

[mm] l_{i,j} [/mm] = [mm] \bruch{a^{{j}}_{i,j}}{a^{{j}}_{j,j}} [/mm]

Das habe ich nämlich bei b) angewendet und erhalten

[mm] \pmat{ 1 & 0&0 \\ 2 & 1&0\\1&0&1 } [/mm]

Ist die Formel falsch?

Bezug
                                        
Bezug
LR-Zerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 25.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]