matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLGS rückwärts
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - LGS rückwärts
LGS rückwärts < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS rückwärts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 26.08.2007
Autor: hussdl

Aufgabe
Man gebe ein homogenes LGS an, dessen Lösungsvektorraum L durch [mm] \vektor{1 \\ -2 \\ 0 \\ 3}, \vektor{1 \\ -1 \\ -1 \\ 4},\vektor{1 \\ 0 \\ -2 \\ 5} [/mm] aufgespannt wird. Bestimmen Sie den Rang der Koeffizientenmatrix.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin. Mein naiver Ansatz über [mm] A\vec{x} [/mm] = [mm] \vec{0} [/mm] scheint nicht zu funktionieren, da ich nur eine Formelorgie erhalte. Gibt es einen (eleganten) allgemeinen Ansatz um solche Aufgaben zu lösen?

Gruß Dani

        
Bezug
LGS rückwärts: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 So 26.08.2007
Autor: angela.h.b.


> Man gebe ein homogenes LGS an, dessen Lösungsvektorraum L
> durch [mm]\vektor{1 \\ -2 \\ 0 \\ 3}, \vektor{1 \\ -1 \\ -1 \\ 4},\vektor{1 \\ 0 \\ -2 \\ 5}[/mm]
> aufgespannt wird. Bestimmen Sie den Rang der
> Koeffizientenmatrix.

>  

>Gibt es einen (eleganten) allgemeinen Ansatz um

> solche Aufgaben zu lösen?

Hallo,

ob's so sonderlich elegant ist, weiß ich nicht, aber es funktioniert.

Wenn der Lösungsraum des GSs durch obige Vektoren aufespannt wird, heißt das ja, daß sich jede Lösung [mm] \vektor{x \\ y\\z\\t} [/mm]

schreiben läßt als [mm] \vektor{x \\ y\\z\\t}=\alpha \vektor{1 \\ -2 \\ 0 \\ 3} [/mm] + [mm] \beta\vektor{1 \\ -1 \\ -1 \\ 4} [/mm] + [mm] \gamma \vektor{1 \\ 0 \\ -2 \\ 5}. [/mm]

Dies liefert Dir 4 Gleichungssysteme. Eliminiere aus diesen [mm] \alpha [/mm] , [mm] \beta [/mm] und [mm] \gamma, [/mm] übrig behältst Du ein GS, in welchem nur noch x,y,z,t vorkommen, und welches von  sämtlichen [mm] \vektor{x \\ y\\z\\t} [/mm] mit [mm] \vektor{x \\ y\\z\\t}=\alpha \vektor{1 \\ -2 \\ 0 \\ 3} [/mm] + [mm] \beta\vektor{1 \\ -1 \\ -1 \\ 4} [/mm] + [mm] \gamma \vektor{1 \\ 0 \\ -2 \\ 5} [/mm] gelöst wird.

Gruß v. Angela






Bezug
                
Bezug
LGS rückwärts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 So 26.08.2007
Autor: hussdl

Okay, wir wissen also, dass A [mm] \cdot \pmat{ 1 & 1 & 1 \\ -2 & -1 & 0 \\ 0 & -1 & -2 \\ 3 & 4 & 5 } \cdot \pmat{ \alpha \\ \beta \\ \gamma } [/mm] = [mm] \pmat{ 0 \\ 0 \\ 0 \\ 0 } [/mm]

Was ich noch nicht ganz verstanden habe ist, wie man daraus vier Gleichungssysteme erhält. Könntest du mir da nochmal auf die Sprünge helfen? ;-)



Bezug
                        
Bezug
LGS rückwärts: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 26.08.2007
Autor: angela.h.b.


> Okay, wir wissen also, dass A [mm]\cdot \pmat{ 1 & 1 & 1 \\ -2 & -1 & 0 \\ 0 & -1 & -2 \\ 3 & 4 & 5 } \cdot \pmat{ \alpha \\ \beta \\ \gamma }[/mm]
> = [mm]\pmat{ 0 \\ 0 \\ 0 \\ 0 }[/mm]

> Was ich noch nicht ganz verstanden habe ist, wie man daraus
> vier Gleichungssysteme erhält. Könntest du mir da nochmal
> auf die Sprünge helfen? ;-)

Das Gleichungssystem erhältst Du direkt aus dieser Überlegung:

> Wenn der Lösungsraum des GSs durch obige Vektoren aufgespannt wird, heißt das ja, daß sich jede
> Lösung $ [mm] \vektor{x \\ y\\z\\t} [/mm] $

> schreiben läßt als $ [mm] \vektor{x \\ y\\z\\t}=\alpha \vektor{1 \\ -2 \\ 0 \\ 3} [/mm] $ + $ [mm] \beta\vektor{1 \\ -1 \\ -1 \\ 4} [/mm] $ + $ [mm] \gamma \vektor{1 \\ 0 \\ -2 \\ 5}. [/mm] $


Du hast hier dann

[mm] x=\alpha*1+\beta*1+\gamma*1 [/mm]
y=...
z=...
t=...,

und aus diesem GS wirfst Du die griechischen Buchstaben heraus.

Gruß v. Angela





Bezug
                                
Bezug
LGS rückwärts: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 So 26.08.2007
Autor: hussdl

Alles klar, habe verstanden (juhuu)

Ich danke Dir, Angela!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]