matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS mit GJ-Algo geht nicht auf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - LGS mit GJ-Algo geht nicht auf
LGS mit GJ-Algo geht nicht auf < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit GJ-Algo geht nicht auf: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:28 So 16.01.2011
Autor: thiele

Aufgabe
Geben sie die Lösungsmengen folgender linearer Gleichungssysteme

a+b+3c-d+0e+2f = z1
a+2b+5c-d+0e+f = z2
2a+3b+8c-2d-e+2f = z3
-2a-2b-6c+2d+4e+0f = z4

Als Matrix:
+1 +1 +3 -1 +0 +2  z1
+1+ 2 +5 -1 +0 +1  z2
+2 +3 +8 -2  -1 +2  z3
-2  -2 -6 +2 +4 +0  z4

über R jeweils mit den Vektoren ( 0 0 0 0), (3 4 7 -6) und (-1 2 0 2) an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe Schwierigkeiten mit der Aufgabe. Mein Ansatz war es mit dem Gauß-Jordan-Algorithmus eine Einheitsmatrix zu bilden und so eine universelle Lösung für das LGS zu bilden.
Leider komme ich schon sehr bald nichtmehr weitere, da meine Restmatrix nach dem Streichen der 1. und 2. Zeile auf der Linken Seite so aussieht:

0 0 2 -2
0 0 4  4

Eine Einheitsmatrix kann ich also nicht bilden und nun bin ich auch schon am Ende mit meinem Latein ^^

        
Bezug
LGS mit GJ-Algo geht nicht auf: Antwort
Status: (Antwort) fertig Status 
Datum: 07:11 Mo 17.01.2011
Autor: angela.h.b.


> Geben sie die Lösungsmengen folgender linearer
> Gleichungssysteme
>  
> a+b+3c-d+0e+2f = z1
>  a+2b+5c-d+0e+f = z2
>  2a+3b+8c-2d-e+2f = z3
>  -2a-2b-6c+2d+4e+0f = z4
>  
> Als Matrix:
>  +1 +1 +3 -1 +0 +2  z1
>  +1+ 2 +5 -1 +0 +1  z2
>  +2 +3 +8 -2  -1 +2  z3
>   -2  -2 -6 +2 +4 +0  z4
>  
> über R jeweils mit den Vektoren ( 0 0 0 0), (3 4 7 -6) und
> (-1 2 0 2) an.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  ich habe Schwierigkeiten mit der Aufgabe. Mein Ansatz war
> es mit dem Gauß-Jordan-Algorithmus eine Einheitsmatrix zu
> bilden und so eine universelle Lösung für das LGS zu
> bilden.

Hallo,

[willkommenmr].

"Einheitsmatrix" kann ja nicht klappen, da die Koeffizientenmatrix eine [mm] 4\times [/mm] 6-Matrix ist.
Richtig ist es, die erweiterte Koeffizientenmatrix erstmal auf Zeilenstufenform zu bringen (Gauß).

>  Leider komme ich schon sehr bald nichtmehr weitere, da
> meine Restmatrix nach dem Streichen der 1. und 2. Zeile auf
> der Linken Seite so aussieht:
>  
> 0 0 2 -2
>  0 0 4  4
>  
> Eine Einheitsmatrix kann ich also nicht bilden und nun bin
> ich auch schon am Ende mit meinem Latein ^^

Ich kann Dir so nicht folgen.
Insbesondere ist mir unklar, wohin die fehlenden beiden Spalten geblieben sind.

Am besten rechnest Du mal ausführlich vor, was Du mit der Matrix getan hast.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]