matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS mit 2 ax
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - LGS mit 2 ax
LGS mit 2 ax < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit 2 ax: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:39 Fr 27.01.2012
Autor: Zingbing

Aufgabe
Prüfen ob lösbar über Z/(7) und ggf. Bestimmen einer Lösung
[mm] ax_{1} [/mm] + [mm] 4x_{2} [/mm] + [mm] ax_{3} [/mm] = 1
[mm] -2x_{2} [/mm] + [mm] 4x_{3} [/mm] = 3
[mm] 2x_{1} [/mm] + [mm] ax_{2} [/mm] + [mm] 6x_{3} [/mm] = 4

Hallo,
ich hab hier die angegebene Aufgabe. Nun weiß ich zwar, wie ich ein "normales" LGS löse (also eines ohne "a"), allerdings nicht, was ich mit diesem hier anstellen soll...die Frage ist, wie löse ich das? Und was soll überhaupt das a bedeuten(bzw. wo kommt es her)?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS mit 2 ax: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:04 Fr 27.01.2012
Autor: Blueplanet

Was heisst denn Z/(7) ?

Bezug
        
Bezug
LGS mit 2 ax: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Fr 27.01.2012
Autor: angela.h.b.


> Prüfen ob lösbar über Z/(7) und ggf. Bestimmen einer
> Lösung
>  [mm]ax_{1}[/mm] + [mm]4x_{2}[/mm] + [mm]ax_{3}[/mm] = 1
>  [mm]-2x_{2}[/mm] + [mm]4x_{3}[/mm] = 3
>  [mm]2x_{1}[/mm] + [mm]ax_{2}[/mm] + [mm]6x_{3}[/mm] = 4
>  Hallo,
>  ich hab hier die angegebene Aufgabe. Nun weiß ich zwar,
> wie ich ein "normales" LGS löse (also eines ohne "a"),
> allerdings nicht, was ich mit diesem hier anstellen
> soll...die Frage ist, wie löse ich das? Und was soll
> überhaupt das a bedeuten(bzw. wo kommt es her)?

Hallo,

das a ist ein Element von [mm] \IZ/7\IZ, [/mm] also ein Element der Restklassen modulo 7, genau wie die anderen Zahlen im LGS auch.

Beim Lösung gehst Du so vor wie immer.
Bedenken mußt Du, daß Du nicht wie in den reellen Zahlen dividieren und mit Brüchen rechnen kannst, sondern Du mußt beispielsweise statt duch 3 zu teilen mit dem Inversen von 3 (modulo 7) multiplizieren.

LG Angela


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]