matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLGS durch Gauß lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - LGS durch Gauß lösen
LGS durch Gauß lösen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS durch Gauß lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 29.03.2006
Autor: Phoney

Aufgabe
Für welchen Wert des Parameters r hat das Gleichungssystem keine Lösung, genau eine Lösung, unendlich viele Lösungen?

Hallo.
Die Aufgabe kann ich irgendwie nicht...

I x+ry = 7
II 3x+3y = 4

Ich würde I mit 3 multiplizieren und sie dann subtrahieren, das ergebit

(I*3) 3x+3ry = 21
II = 3x + 3y = 4

nun subtrahiere ich sie

3ry - 3y = 17

Und inwiefern kann ich das nun auflösen, sodass es eine, keine und unendlich Lösungen gibt?

Ich versuche mal auszuklammern

3y (r - 1) = 17

Für r=1 gibt es keine Lösung

Wenn r >1 ist, dann gibt es eine Lösung

Unendlich viele Lösungen sind ausgeschloßen?

Gruß Phoney

        
Bezug
LGS durch Gauß lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mi 29.03.2006
Autor: maetty

Hallo!

Entschuldigt bitte meine falsche Antwort! Das kommt davon, wenn man unter Zeitdruck schnell noch eine Frage beantworten will!

Zur Frage:
Ich denk jetzt sollte alles klar sein.


mätty

Bezug
                
Bezug
LGS durch Gauß lösen: Einwand?
Status: (Frage) beantwortet Status 
Datum: 14:38 Mi 29.03.2006
Autor: Phoney


> Hallo!
>  
> Also Du kannst ja einfach mal x und y bestimmen, in
> Abhänigkeit von r.
>  
> [mm]x+ry=7 \to x=7-ry[/mm]
>  
> in II:
>  
> [mm]3(7-ry)+3y=4 \to y= - \bruch{17}{3-3r}[/mm]
>  
> Damit gilt für x:
>  
> [mm]x=7-r*\left(- \bruch{17}{3-3r}\right) \to x= 7+ \left( \bruch{17r}{3-3r}\right)[/mm]
>  
>
> Diese Terme haben für r=1 keine Lösung (die Nenner werden
> Null).
>  
> Aus [mm]x=7-ry[/mm]  folgt, dass es für [mm]r = 0[/mm] genau eine Lösung
> gibt.
>  
> Für alle anderen r gibt es dann unendlich viele Lösungen!

Wenn ich dann sage, r=2, bekomme ich bei den Gleichungssystemen

(alt)
I x+ry = 7
II 3x+3y = 4

r=2

(neu)
I x+2y = 7
II 3x+3y = 4

I*3 - II

3y = 17; y = [mm] \bruch{17}{3} [/mm]

aus II folgt dann x = [mm] -\bruch{13}{3} [/mm]

Hier gibts auch nur eine Lösung, also kann mit deiner Lösung etwas nicht stimmen? Oder wo liegt mein Fehler?

Bezug
                        
Bezug
LGS durch Gauß lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mi 29.03.2006
Autor: metzga

Hallo,

du hast doch schon alles gelöst.
Richtig subtrahiert, dann kommst du zur Bedingung:
[mm]3y(1-r)=-17[/mm]
eine Lösung:
dann muss man nach y auflösen können, dass kann man für
[mm]r\not=1[/mm]
keine Lösung:
dann kommt nix sinnvolles raus, wie du schon richtig gschrieben hast, bei
r=1 denn dann würde ja stehen 0=-17.
bei unendlich viele Lösungen:
müsste dann nach deinen ersten Schritt 0=0 rauskommen und das geht nicht bei [mm]3y(1-r)=-17[/mm], egal mit welchem r.
Also du hast alles richtig gelöst.

Bezug
                                
Bezug
LGS durch Gauß lösen: also vorherige Lösung falsch?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:06 Mi 29.03.2006
Autor: Bastiane

Hallo zusammen!

> du hast doch schon alles gelöst.
> Richtig subtrahiert, dann kommst du zur Bedingung:
>  [mm]3y(1-r)=-17[/mm]
>  eine Lösung:
> dann muss man nach y auflösen können, dass kann man für
> [mm]r\not=1[/mm]
>  keine Lösung:
>  dann kommt nix sinnvolles raus, wie du schon richtig
> gschrieben hast, bei
> r=1 denn dann würde ja stehen 0=-17.
>  bei unendlich viele Lösungen:
>  müsste dann nach deinen ersten Schritt 0=0 rauskommen und
> das geht nicht bei [mm]3y(1-r)=-17[/mm], egal mit welchem r.
>  Also du hast alles richtig gelöst.  

Also war es richtig, dass es kein r gibt, so dass das LGS unendlich viele Lösungen hat und die Antwort von maetty war falsch!? Vielleicht sollte man sie dann als falsch markieren und dazu schreiben, was daran falsch ist...

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
LGS durch Gauß lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mi 29.03.2006
Autor: mathmetzsch

Hallo maetty,

> Hallo!
>  
> Also Du kannst ja einfach mal x und y bestimmen, in
> Abhänigkeit von r.
>  
> [mm]x+ry=7 \to x=7-ry[/mm]
>  
> in II:
>  
> [mm]3(7-ry)+3y=4 \to y= - \bruch{17}{3-3r}[/mm]
>  
> Damit gilt für x:
>  
> [mm]x=7-r*\left(- \bruch{17}{3-3r}\right) \to x= 7+ \left( \bruch{17r}{3-3r}\right)[/mm]
>  
>
> Diese Terme haben für r=1 keine Lösung (die Nenner werden
> Null).

[daumenhoch]

>  
> Aus [mm]x=7-ry[/mm]  folgt, dass es für [mm]r = 0[/mm] genau eine Lösung
> gibt.

Ja, aber für die anderen auch!

>  
> Für alle anderen r gibt es dann unendlich viele Lösungen!
>  

[abgelehnt]
Warum? Du hast doch alles schon nach x und y umgestellt. Wenn man da für r irgendwas mit [mm] r\not=1 [/mm] einsetzt, kommt stets eine Lösung heraus!

>
> mätty

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]