matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS, Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - LGS, Substitution
LGS, Substitution < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS, Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Fr 19.06.2009
Autor: itse

Aufgabe
Löse das Gleichungssystem nach r,s,t, u. Durch geeignete Substitution erhalt man ein lineares Gleichungssystem

$1: ru²  + 3s - 2tu =   1$
$2: 2ru²+ 8s - 3tu =  -1$
$3: -ru² +   s + 5tu = -8$
$4: rt = 2$

Hallo Zusammen,

ich habe das mit der Substitution erstmal vernachlässigt, ich habe doch durch die ersten drei Gleichungen, drei Unbekannte ru², s und tu gegeben.

Wenn ich nur diese drei Gleichungen betrachte, bin ich wie folgt vorgegangen:

1.Gleichung + 3 Gleichung: $4s + 3tu = -7$, 5.Gleichung

3.Gleichung mal 2 + 2.Gleichung: $10s +7tu = -17$, 6.Gleichung

Somit kann ich nun durch die Gleichung 5 und 6, tu und s bestimmen:

$tu = -1$
$s = -1$

Mit diesen Angaben kann ich nun noch ru² bestimmen und rt war von Anfang an gegeben:

Somit erhalte ich insgesamt:

$s  = -1$

$tu = -1 -> t = [mm] -\bruch{1}{u}$ [/mm] und $u = [mm] -\bruch{1}{t}$ [/mm]

$rt  =  2 -> r = [mm] \bruch{2}{t}$ [/mm]

$ru² = 2$

Wenn ich nun $r = [mm] \bruch{2}{t}$ [/mm] und $u = [mm] -\bruch{1}{t}$ [/mm] in $ru² = 2$ einsetze, erhalte ich dann für t die Lösung:

[mm] $\bruch{2}{t} \cdot{} (-\bruch{1}{t})² [/mm] = 2 -> t = [mm] \wurzel[3]{\bruch{3}{2}}$ [/mm]

daraus ergeben sich dann alle weiteren Werte:

$r = [mm] \bruch{2}{\wurzel[3]{\bruch{3}{2}}} [/mm] = 2 [mm] \wurzel[3]{\bruch{2}{3}}$ [/mm]

$u = [mm] \bruch{-1}{\wurzel[3]{\bruch{3}{2}}} [/mm] = - [mm] \wurzel[3]{\bruch{2}{3}}$ [/mm]


Würde diese Lösung stimmen?

Welche Substitution müsste man wählen um ein lineares Gleichungssystem zu erhalten? Und wie kommt man darauf?

Grüße
itse

        
Bezug
LGS, Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Fr 19.06.2009
Autor: tranquilo

also ich habs grad mitm Cramer (Substitution ru²=x und tu=y) gemacht und hab tu=-1; ru²=-25/2;s=-1 raus.

Für u dadurch [mm] \wurzel[3]{-\bruch{25}{4} } [/mm]  r=3,684... (taschenrechner) :)


kann aber auch sein, dass ich mich verrechnet habe...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]