matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - LGS
LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 11.05.2008
Autor: Ersty

Aufgabe
Gibt es Lösungen für das LGS für geeignete [mm] \lambda \in \IR, [/mm] für die [mm] \vektor{x_{1} \\ x_{2}} \not= \vektor{0 \\ 0} [/mm] ist.
Das LGS ist [mm] \pmat{ 3-\lambda & 2 \\ 2 & 1-\lambda } [/mm] * [mm] \vektor{x_{1} \\ x_{2}} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Kann ich die Aufgabe mit dem Rang lösen?
Wenn Rang A = Rang A,b ist, ist das LGS lösbar, oder muss ich es ausrechnen? Wenn ich es ausrechnen muss, wie genau, ich habs gerechnet und bekomme nur Schwachsinn raus!!
Bitte helft mir, vielen Dank!

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 So 11.05.2008
Autor: schachuzipus

Hallo Ersty,

> Gibt es Lösungen für das LGS für geeignete [mm]\lambda \in \IR,[/mm]  für die [mm]\vektor{x_{1} \\ x_{2}} \not= \vektor{0 \\ 0}[/mm] ist.
>  Das LGS ist [mm]\pmat{ 3-\lambda & 2 \\ 2 & 1-\lambda }[/mm] *  [mm]\vektor{x_{1} \\ x_{2}}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  Ich habe diese
> Frage in keinem anderen Forum gestellt.
>  
> Kann ich die Aufgabe mit dem Rang lösen?
>  Wenn Rang A = Rang A,b ist, ist das LGS lösbar,

Das stimmt zwar, aber hier hast du ja ein homogenes LGS [mm] $A\cdot{}\vec{x}=\vec{0}$, [/mm] also mit [mm] $\vec{b}=\vec{0}$, [/mm] da ist ja stets [mm] $rg(A)=rg(A\mid [/mm] b)$

(es gibt ja immer die triviale Lösung [mm] $\vec{x}=\vektor{x_1\\x_2}=\vektor{0\\0}$ [/mm] für ein homogenes LGS)

Ein homogenes System ist also stets lösbar! Du musst rausfinden, ob es (bzw. für welche(s) [mm] $\lambda$) [/mm] es neben der trivialen Lösung eine nicht triviale gibt..


> oder muss
> ich es ausrechnen? [ok]

Jo, bringe die Matrix [mm] $\pmat{ 3-\lambda & 2 \\ 2 & 1-\lambda }$ [/mm] in Zeilenstufenform und schaue dann, für welche(n) Wert(e) von [mm] $\lambda$ [/mm] der Koeffizient vor [mm] $x_2$ [/mm] in der letzten Zeile der Matrix, die du dann erhälts, =0 wird...

> Wenn ich es ausrechnen muss, wie genau,
> ich habs gerechnet und bekomme nur Schwachsinn raus!!

Addiere das $-2$ -fache der ersten Zeile zum [mm] $(3-\lambda)$ [/mm] -fachen der zweiten Zeile, dann hast du schon die gewünschte Dreiecksform und kannst die Bedingung(en) an [mm] $\lambda$ [/mm] "ablesen"

>  Bitte helft mir, vielen Dank!


Gruß

schachuzipus

Bezug
                
Bezug
LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 So 11.05.2008
Autor: Ersty

Vielen Dank! Du hast mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]