matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - LGS
LGS < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 06.11.2007
Autor: Igor1

Aufgabe
Löse folgendes LGS:

b)  [mm] 2x_{1}+2x_{2}+4x_{3} [/mm] = 1
      [mm] x_{1}+x_{2}+x_{3} [/mm] = -1
      [mm] -x_{1}-x_{2}-3x_{3} [/mm] = -2

Hallo,

ich habe die Matrix mit dem Gauss-Verfahren so umgeformt, dass am Ende

steht:
[mm] \pmat{ 2 & 2 & 4 & =1\\ 0 & 0& 2&=3\\0 & 0& -2&=-3 } [/mm]

Daraus folgt : [mm] x_{3}=1,5 \Rightarrow 2x_{1}+2x_{2} [/mm] +6 = 1  ;

und jetzt habe ich für [mm] x_{2} [/mm] einfach [mm] \lambda [/mm] eingesetzt und damit auch [mm] x_{3} [/mm] bestimmt ( [mm] x_{3} [/mm] = -2,5 [mm] -\lambda). [/mm]

Ich habe dazu zwei Fragen :

1) Kann man so argumentieren?
2) wenn ja, warum kann man so argumentieren? bzw. ich habe schon gesehen, dass man so LGS lösen kann, jedoch die genaueren Hintergründe kenne ich nicht. Hat das was mit dem Rang und Dimension einer Matrix zu tun?...



Schöne Grüße

Igor






        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mi 07.11.2007
Autor: angela.h.b.


> Löse folgendes LGS:
>  
> b)  [mm]2x_{1}+2x_{2}+4x_{3}[/mm] = 1
>        [mm]x_{1}+x_{2}+x_{3}[/mm] = -1
>        [mm]-x_{1}-x_{2}-3x_{3}[/mm] = -2
>  Hallo,
>  
> ich habe die Matrix mit dem Gauss-Verfahren so umgeformt,
> dass am Ende
>  
> steht:
>  [mm]\pmat{ 2 & 2 & 4 & =1\\ 0 & 0& 2&=3\\0 & 0& -2&=-3 }[/mm]
>  
> Daraus folgt : [mm]x_{3}=1,5 \Rightarrow 2x_{1}+2x_{2}[/mm] +6 = 1  
> ;
>  
> und jetzt habe ich für [mm]x_{2}[/mm] einfach [mm]\lambda[/mm] eingesetzt und
> damit auch [mm]x_{3}[/mm] bestimmt ( [mm]x_{3}[/mm] = -2,5 [mm]-\lambda).[/mm]
>  
> Ich habe dazu zwei Fragen :
>  
> 1) Kann man so argumentieren?

Hallo,

ein bißchen verwurschtelt ist das noch...

Die Koeffizientenmatrix kannst Du noch weiter umformen zu

[mm] \pmat{ 2 & 2 & 4 & | 1\\ 0 & 0& 2&| 3\\0 & 0& &| } [/mm]

Nun hast Du Zeilenstufenform. Du kannst ablesen: der Rang der Matrix =2 (2 "gefüllte" zeilen in Zeilenstufenform).

Das sagt Dir: die Dimension des Lösungsraumes ist 3-2=1.

Es wird also eine Gerade herauskommen als Lösungs dieses inhomogenen GSs.

Richtig erkannt hast Du

[mm] x_3=1.5 [/mm]  und
[mm] 2x_{1}+2x_{2}[/mm] [/mm] +6 = 1

In der unteren Gleichung kannst Du eine Variable frei wählen, etwa

[mm] x_2=\lambda [/mm] mit [mm] \lambda \in \IR [/mm] beliebig.

Summa summarum hast Du dann

[mm] x_{1} [/mm] = -2.5 [mm] -\lambda [/mm]
[mm] x_2= \lambda [/mm]
x-3=1.5,

so daß sämtliche Lösungen [mm] \vec{x} [/mm] die Gestalt [mm] \vec{x}=\vektor{-2.5 \\ 0\\1.5} +\lambda\vektor{-1 \\ 1\\0} [/mm]  haben.

Gruß v. Angela






>  2) wenn ja, warum kann man so argumentieren? bzw. ich habe
> schon gesehen, dass man so LGS lösen kann, jedoch die
> genaueren Hintergründe kenne ich nicht. Hat das was mit dem
> Rang und Dimension einer Matrix zu tun?...
>  
>
>
> Schöne Grüße
>  
> Igor
>  
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]