matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeL.Gleichungssystem, Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - L.Gleichungssystem, Körper
L.Gleichungssystem, Körper < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L.Gleichungssystem, Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 So 30.11.2008
Autor: Sahra321

Hallo

Habe ein Problem bei folgender Aufgabe:

Lösen Sie das folgende Gleichungssystem über [mm] \IF_{3} [/mm]
  
[mm] x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] x_{3} [/mm] - [mm] x_{4} [/mm]  =  0
- [mm] x_{3} [/mm] - [mm] x_{4} [/mm]  =  0
  [mm] x_{4} [/mm] + [mm] x_{5} [/mm] = -1

Meine Lösung:
Setzen von [mm] t_{1} [/mm] und [mm] t_{2} \in \IF_{3} [/mm] für die Unbestimmten, die
an keiner Stuffenposition vorkommen

Dann erhalte ich die Lösung
[mm] x_{5} [/mm] = [mm] t_{2} [/mm]
[mm] x_{4} [/mm] = - 1 -  [mm] t_{2} [/mm]
[mm] x_{3} [/mm] = 1 + [mm] t_{2} [/mm]
[mm] x_{2} [/mm] = [mm] t_{1} [/mm]

Soweit passen mein Lösungen, aber nun zum Problem:
bei [mm] x_{1} [/mm] erhalte ich die Lösung

[mm] x_{1} [/mm] = [mm] t_{1} [/mm] - 2 - [mm] 2t_{2} [/mm]

Die Korrekte Lösung sollte aber
[mm] x_{1} [/mm] = [mm] t_{1} [/mm] + 1 + [mm] t_{2} [/mm]  
sein

Durch mod 2 erhalte ich zwar dieses Ergebnis,
aber mod 2 wird hier doch gar nicht gebraucht, Oder?

Wenn ja, dann muss  es aber auch auf [mm] x_{4} [/mm] = - 1 -  [mm] t_{2} [/mm]
angewendet werden, aber [mm] x_{4} [/mm] ist schon die richtige Lösung???



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt.






        
Bezug
L.Gleichungssystem, Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Mo 01.12.2008
Autor: angela.h.b.


> Dann erhalte ich die Lösung
>  [mm]x_{5}[/mm] = [mm]t_{2}[/mm]
>  [mm]x_{4}[/mm] = - 1 -  [mm]t_{2}[/mm]
>  [mm]x_{3}[/mm] = 1 + [mm]t_{2}[/mm]
>  [mm]x_{2}[/mm] = [mm]t_{1}[/mm]
>  
> Soweit passen mein Lösungen, aber nun zum Problem:
>  bei [mm]x_{1}[/mm] erhalte ich die Lösung
>
> [mm]x_{1}[/mm] = [mm]t_{1}[/mm] - 2 - [mm]2t_{2}[/mm]
>  
> Die Korrekte Lösung sollte aber
> [mm]x_{1}[/mm] = [mm]t_{1}[/mm] + 1 + [mm]t_{2}[/mm]  
> sein

Hallo,

[willkommenmr].

Du sollst ja mod 3 rechnen, und hier ist 1 das Inverse zu 2, also 1=-2,

so daß  [mm]x_{1}[/mm] = [mm]t_{1}[/mm] - 2 - [mm]2t_{2}[/mm][mm] =t_1+1+t_2 [/mm] ist.

>  
> Durch mod 2 erhalte ich zwar dieses Ergebnis,
>  aber mod 2 wird hier doch gar nicht gebraucht, Oder?

Nein, mod 3 wird gebraucht, und mod 2 würdest Du auch was anderes erhalten. Mod 2 ist nämlich 2=0.

>  
> Wenn ja, dann muss  es aber auch auf [mm]x_{4}[/mm] = - 1 -  [mm]t_{2}[/mm]
>  angewendet werden, aber [mm]x_{4}[/mm] ist schon die richtige
> Lösung???

Mod 3 ist das dasselbe wie [mm] x_4=2+2t_2. [/mm]

Gruß v. Angela

>  
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt.
>  
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]