L-Strukturen zu finden < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:19 Di 19.04.2016 | Autor: | sissile |
Aufgabe | Sei P ein einstelliges Relationssymbol, f ein zweistelliges Funktionssymbol und sei [mm] L=\{P, f\}. [/mm] Für jede der folgenden Formeln [mm] \phi
[/mm]
(1) [mm] \forall v_1 [/mm] f [mm] v_0 v_1 \doteq v_0
[/mm]
(2) [mm] \exists v_0 \forall v_1 [/mm] f [mm] v_0 v_1 \doteq v_1
[/mm]
(3) [mm] \exists v_0( Pv_0 \wedge \forall v_1 [/mm] P f [mm] v_0 v_1)
[/mm]
finden Sie jeweils L-STrukturen [mm] \mathcal{A}, \mathcal{B} [/mm] und Belegungen [mm] \beta, \gamma [/mm] sodass [mm] \mathcal{A} \models \phi [\beta] [/mm] und [mm] \mathcal{B} \not\models \phi[\gamma]
[/mm]
Hinweis: Man betrachte geeignete Strukturen mit einelemntigen bezüglich zweielementigen Universum. |
Hallo,
Was mir der Hinweis sagen will ich für mich rätselhaft..
Sei [mm] \phi_1= \forall v_1 [/mm] f [mm] v_0 v_1 \doteq v_0
[/mm]
[mm] \mathcal{A} \models \phi_1 [\beta] [/mm] gdw. für alle a [mm] \in [/mm] Grundmenge gilt [mm] \mathcal{A} \models [/mm] f [mm] v_0 v_1 \doteq v_0 [/mm] [ [mm] \beta \frac{a}{v_1}]
[/mm]
gdw. für alle a [mm] \in [/mm] Grundmenge gilt [mm] fv_0v_1^{\mathcal{A}} [\beta \frac{a}{v_1}]=v_0^{\mathcal{A}}[\beta \frac{a}{v_1}]
[/mm]
gdw. für alle a [mm] \in [/mm] Grundmenge gilt [mm] f^{\mathcal{A}}(\beta(v_0),a)=\beta(v_0)
[/mm]
Kann ich nun einfach [mm] (\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\{1\}, f^{\mathcal{A}}, P^{\mathcal{B}}) [/mm] mit [mm] f^{\mathcal{A}} [/mm] üblige Multiplikation und [mm] \beta(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm] definieren?P ist ja ganz egal wie es definiert ist.
[mm] (\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\{0,1\}, f^{\mathcal{B}}, P^{\mathcal{B}}) [/mm] wobei [mm] f^{\mathcal{B}} [/mm] die üblige Multiplikation und [mm] \gamma(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm] ist. P ist ja wieder egal, wie ich es definiere.
Für [mm] \phi_2= \exists v_0 \forall v_1 [/mm] f [mm] v_0 v_1 \doteq v_1
[/mm]
[mm] \mathcal{A} \models \phi_2 [\beta]
[/mm]
gdw. es gibt es a [mm] \in [/mm] Grundmenge für alle b [mm] \in [/mm] grundmenge sodass [mm] f^{\mathcal{A}}(a,b)=b
[/mm]
[mm] (\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\mathbb{N}, f^{\mathcal{A}}, P^{\mathcal{B}}) [/mm] mit [mm] f^{\mathcal{A}} [/mm] üblicheMultiplikation und [mm] \beta(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm]
[mm] (\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}}) [/mm] wobei [mm] f^{\mathcal{B}} [/mm] die übliche Addition und [mm] \gamma(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm] ist. P ist ja wieder egal, wie ich es definiere.
[mm] \phi_3=\exists v_0( Pv_0 \wedge \forall v_1 [/mm] P f [mm] v_0 v_1)
[/mm]
[mm] \mathcal{A} \models \phi_3
[/mm]
gdw. es gibt ein a [mm] \in [/mm] Grundmenge sodass a [mm] \in P^{\mathcal{A}} [/mm] und für alle b [mm] \in [/mm] Grundmenge [mm] f^{\mathcal{A}}(a,b) \in P^{\mathcal{A}}
[/mm]
[mm] (\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\mathbb{N}, f^{\mathcal{A}}, P^{\mathcal{B}}) [/mm] mit [mm] f^{\mathcal{A}} [/mm] übliche Multiplikation und [mm] \beta(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm] und [mm] P^{\mathcal{A}} [/mm] "ist 0".
[mm] (\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}}) [/mm] wobei [mm] f^{\mathcal{B}} [/mm] die übliche Multiplikation und [mm] \gamma(v_i)=1 \forall [/mm] i [mm] \in \mathbb{N} [/mm] ist.und [mm] P^{\mathcal{B}} [/mm] "ist 0"
Mir kommt vor, was ich tuhe ist nicht die Aufgabe?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:30 Di 19.04.2016 | Autor: | hippias |
> Sei P ein einstelliges Relationssymbol, f ein zweistelliges
> Funktionssymbol und sei [mm]L=\{P, f\}.[/mm] Für jede der folgenden
> Formeln [mm]\phi[/mm]
> (1) [mm]\forall v_1[/mm] f [mm]v_0 v_1 \doteq v_0[/mm]
> (2) [mm]\exists v_0 \forall v_1[/mm]
> f [mm]v_0 v_1 \doteq v_1[/mm]
> (3) [mm]\exists v_0( Pv_0 \wedge \forall v_1[/mm]
> P f [mm]v_0 v_1)[/mm]
> finden Sie jeweils L-STrukturen [mm]\mathcal{A}, \mathcal{B}[/mm]
> und Belegungen [mm]\beta, \gamma[/mm] sodass [mm]\mathcal{A} \models \phi [\beta][/mm]
> und [mm]\mathcal{B} \not\models \phi[\gamma][/mm]
> Hinweis: Man
> betrachte geeignete Strukturen mit einelemntigen bezüglich
> zweielementigen Universum.
> Hallo,
> Was mir der Hinweis sagen will ich für mich
> rätselhaft..
>
> Sei [mm]\phi_1= \forall v_1[/mm] f [mm]v_0 v_1 \doteq v_0[/mm]
> [mm]\mathcal{A} \models \phi_1 [\beta][/mm]
> gdw. für alle a [mm]\in[/mm] Grundmenge gilt [mm]\mathcal{A} \models[/mm] f
> [mm]v_0 v_1 \doteq v_0[/mm] [ [mm]\beta \frac{a}{v_1}][/mm]
> gdw. für alle a
> [mm]\in[/mm] Grundmenge gilt [mm]fv_0v_1^{\mathcal{A}} [\beta \frac{a}{v_1}]=v_0^{\mathcal{A}}[\beta \frac{a}{v_1}][/mm]
>
> gdw. für alle a [mm]\in[/mm] Grundmenge gilt
> [mm]f^{\mathcal{A}}(\beta(v_0),a)=\beta(v_0)[/mm]
>
> Kann ich nun einfach [mm](\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\{1\}, f^{\mathcal{A}}, P^{\mathcal{B}})[/mm]
> mit [mm]f^{\mathcal{A}}[/mm] üblige Multiplikation und [mm]\beta(v_i)=1 \forall[/mm]
> i [mm]\in \mathbb{N}[/mm] definieren?P ist ja ganz egal wie es
> definiert ist.
Ja, darauf läuft es hinaus. Ich würde aber [mm] $P^{\mathcal{A}}$ [/mm] explizit angeben. Auch könnte man genauer festlegen, dass [mm] $f^{\mathcal{A}}(x,y)= [/mm] 1$ f.a. $x,y$ gilt.
> [mm](\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\{0,1\}, f^{\mathcal{B}}, P^{\mathcal{B}})[/mm]
> wobei [mm]f^{\mathcal{B}}[/mm] die üblige Multiplikation und
> [mm]\gamma(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] ist. P ist ja wieder
> egal, wie ich es definiere.
Überprüfe doch nocheinmal genau, ob diese Struktur wirklich das gewünschte leistet.
>
> Für [mm]\phi_2= \exists v_0 \forall v_1[/mm] f [mm]v_0 v_1 \doteq v_1[/mm]
>
> [mm]\mathcal{A} \models \phi_2 [\beta][/mm]
> gdw. es gibt es a [mm]\in[/mm]
> Grundmenge für alle b [mm]\in[/mm] grundmenge sodass
> [mm]f^{\mathcal{A}}(a,b)=b[/mm]
> [mm](\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\mathbb{N}, f^{\mathcal{A}}, P^{\mathcal{B}})[/mm]
> mit [mm]f^{\mathcal{A}}[/mm] üblicheMultiplikation und [mm]\beta(v_i)=1 \forall[/mm]
> i [mm]\in \mathbb{N}[/mm]
> [mm](\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}})[/mm]
> wobei [mm]f^{\mathcal{B}}[/mm] die übliche Addition und
> [mm]\gamma(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] ist. P ist ja wieder
> egal, wie ich es definiere.
Richtig bzw. s.o.
>
> [mm]\phi_3=\exists v_0( Pv_0 \wedge \forall v_1[/mm] P f [mm]v_0 v_1)[/mm]
>
> [mm]\mathcal{A} \models \phi_3[/mm]
> gdw. es gibt ein a [mm]\in[/mm]
> Grundmenge sodass a [mm]\in P^{\mathcal{A}}[/mm] und für alle b [mm]\in[/mm]
> Grundmenge [mm]f^{\mathcal{A}}(a,b) \in P^{\mathcal{A}}[/mm]
>
> [mm](\mathcal{A}, (s^{\mathcal{A}})_{s\in L}):= (\mathbb{N}, f^{\mathcal{A}}, P^{\mathcal{B}})[/mm]
> mit [mm]f^{\mathcal{A}}[/mm] übliche Multiplikation und
> [mm]\beta(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] und [mm]P^{\mathcal{A}}[/mm]
> "ist 0".
Besser [mm] $P^{\mathcal{A}}= \{0\}$.
[/mm]
> [mm](\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}})[/mm]
> wobei [mm]f^{\mathcal{B}}[/mm] die übliche Multiplikation und
> [mm]\gamma(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] ist.und
> [mm]P^{\mathcal{B}}[/mm] "ist 0"
Achtung, hier ist Dir ein Schnitzer unterlaufen!
>
>
> Mir kommt vor, was ich tuhe ist nicht die Aufgabe?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:07 Mi 20.04.2016 | Autor: | sissile |
> > $ [mm] (\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\{0,1\}, f^{\mathcal{B}}, P^{\mathcal{B}}) [/mm] $
> wobei $ [mm] f^{\mathcal{B}} [/mm] $ die üblige Multiplikation und
> $ [mm] \gamma(v_i)=1 \forall [/mm] $ i $ [mm] \in \mathbb{N} [/mm] $ ist. P ist ja wieder
> egal, wie ich es definiere.
> Überprüfe doch nocheinmal genau, ob diese Struktur wirklich das gewünschte leistet.
Müsste doch stimmen?
[mm] \mathcal{B} \models \phi[\gamma] [/mm] gdw für alle a [mm] \in [/mm] Grundmenge gilt [mm] f^{\mathcal{B}}(\gamma(v_0),a)=\gamma(v_0)
[/mm]
Für a=0 stimmt die Aussage doch nicht.
[mm] f^{\mathcal{B}}( [/mm] 1,0)=0 und nicht 1
> $ [mm] (\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}}) [/mm] $
> wobei $ [mm] f^{\mathcal{B}} [/mm] $ die übliche Multiplikation und
> $ [mm] \gamma(v_i)=1 \forall [/mm] $ i $ [mm] \in \mathbb{N} [/mm] $ ist.und
> $ [mm] P^{\mathcal{B}} [/mm] $ "ist 0"
> Achtung, hier ist Dir ein Schnitzer unterlaufen!
Warum?
[mm] \mathcal{B} \models \phi_3[\gamma] [/mm] gdw. es gibt ein a [mm] \in [/mm] Grundmenge sodass (a) [mm] \in P^{\mathcal{B}} [/mm] und für alle [mm] b\in [/mm] Grundmenge [mm] f^{\mathcal{B}}(a,b) \in P^{\mathcal{B}}
[/mm]
Wenn ich das verneine erhalte ich: Für alle a [mm] \in [/mm] Grundmenge gilt (a) [mm] \not\in P^{\mathcal{B}} [/mm] oder es existiert ein b [mm] \in [/mm] grundmenge sodass [mm] f^{\mathcal{B}} [/mm] (a,b) [mm] \not\in P^{\mathcal{B}}
[/mm]
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:26 Do 21.04.2016 | Autor: | hippias |
> > > [mm](\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\{0,1\}, f^{\mathcal{B}}, P^{\mathcal{B}})[/mm]
>
> > wobei [mm]f^{\mathcal{B}}[/mm] die üblige Multiplikation und
> > [mm]\gamma(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] ist. P ist ja
> wieder
> > egal, wie ich es definiere.
>
> > Überprüfe doch nocheinmal genau, ob diese Struktur
> wirklich das gewünschte leistet.
>
> Müsste doch stimmen?
> [mm]\mathcal{B} \models \phi[\gamma][/mm] gdw für alle a [mm]\in[/mm]
> Grundmenge gilt [mm]f^{\mathcal{B}}(\gamma(v_0),a)=\gamma(v_0)[/mm]
> Für a=0 stimmt die Aussage doch nicht.
> [mm]f^{\mathcal{B}}([/mm] 1,0)=0 und nicht 1
Richtig. Ich hatte etwas falsch verstanden.
>
>
> > [mm](\mathcal{B}, (s^{\mathcal{B}})_{s\in L}):= (\mathbb{N}\setminus \{0\}, f^{\mathcal{B}}, P^{\mathcal{B}})[/mm]
>
> > wobei [mm]f^{\mathcal{B}}[/mm] die übliche Multiplikation und
> > [mm]\gamma(v_i)=1 \forall[/mm] i [mm]\in \mathbb{N}[/mm] ist.und
> > [mm]P^{\mathcal{B}}[/mm] "ist 0"
>
> > Achtung, hier ist Dir ein Schnitzer unterlaufen!
> Warum?
> [mm]\mathcal{B} \models \phi_3[\gamma][/mm] gdw. es gibt ein a [mm]\in[/mm]
> Grundmenge sodass (a) [mm]\in P^{\mathcal{B}}[/mm] und für alle
> [mm]b\in[/mm] Grundmenge [mm]f^{\mathcal{B}}(a,b) \in P^{\mathcal{B}}[/mm]
>
> Wenn ich das verneine erhalte ich: Für alle a [mm]\in[/mm]
> Grundmenge gilt (a) [mm]\not\in P^{\mathcal{B}}[/mm] oder es
> existiert ein b [mm]\in[/mm] grundmenge sodass [mm]f^{\mathcal{B}}[/mm] (a,b)
> [mm]\not\in P^{\mathcal{B}}[/mm]
Deine Relation lautet: ist gleich $0$. Aber $0$ gehört nicht zur Grundmenge. Das geht nicht, denn nur Relationen, die über der Grundmenge gebildet werden, sind zulässig.
>
> LG,
> sissi
|
|
|
|