matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKvgz. der Binomialreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Kvgz. der Binomialreihe
Kvgz. der Binomialreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kvgz. der Binomialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Fr 31.08.2007
Autor: hilbert90

Aufgabe
Für welche [mm] \alpha\in \IC [/mm] und [mm] z\in \IC [/mm] mit |z|=1 konvergiert die Binomialreihe def durch [mm] \summe_{n=1}^{\infty}\vektor{n+\alpha \\ n}z^n [/mm] ?

Hallo zusammen,
der Einheitskreis ist ja der Rand des Konvergenzbereichs der Reihe völlig unabhängig von [mm] \alpha. [/mm] Die holomorphe Fkt, die dort durch die Reihe definiert wird, lautet [mm] (1-z)^{-\alpha-1}. [/mm] Die Frage ist also: Was passiert mit der Reihe auf dem Rand?
Wahrscheinlich gilt folgendes:
1.) abs Kvgz für: [mm] Re(\alpha)<-1 [/mm]
2.) Kvgz, aber nicht abs, für: -1 [mm] \le Re(\alpha)<0 [/mm] und [mm] z\not=1 [/mm]
3.) Divergenz für: [mm] Re(\alpha) \ge [/mm] 0 oder (-1 [mm] \le Re(\alpha)<0 [/mm] und z=1)

Ich bräuchte nun eine Begründung dafür. Ein vollständiger Beweis muss es natürlich nicht sein. Eher eine etwas detailliertere Idee. Benutzt werden kann im Übrigen folgende asymptotische Gleichheit [mm] \vektor{n+\alpha \\ n} \sim \bruch{n^\alpha}{\Gamma (\alpha+1)}, [/mm] falls nötig.

Also falls mir da irgendwer helfen kann, wär das echt mal spitze!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kvgz. der Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 31.08.2007
Autor: Hund

Hallo,

den Koeffizienten kannst du doch explizit angeben und dann Quotientenkriterium verwenden um deine Idee zu bestätigen, das ist doch eine gewöhnliche Potenzreihe.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Kvgz. der Binomialreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:40 Fr 31.08.2007
Autor: hilbert90

Hallo Hund!
Dein Vorschlag löst möglicherweise nur einen kleinen Teil des Problems. Zumal man mit dem Quotientenkriterium ja nur absolute Konvergenz zeigt. Die liegt aber für [mm] Re(\alpha) \le [/mm] -1 gewiss nicht vor.
Hat also leider nicht wirklich geholfen...

Bezug
                        
Bezug
Kvgz. der Binomialreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 04.09.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]