matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKurze Verständnisfrage/Spiegel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Kurze Verständnisfrage/Spiegel
Kurze Verständnisfrage/Spiegel < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Verständnisfrage/Spiegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 06.09.2012
Autor: quasimo

Aufgabe
Sei [mm] \delta [/mm] : [mm] \IR^2 [/mm] -> [mm] \IR^2 [/mm] mit [mm] \delta\vektor{x \\ y}=\vektor{-x \\ y} [/mm]
handelt es sich dann um eine SPiegelung an der y-ache längs der x-achse oder an der x-ache längs der y-achse ?
Sei [mm] \delta': \IR^3 [/mm] -> [mm] \IR^3 [/mm] mit [mm] \delta' \vektor{x \\ y \\z}=\vektor{x \\ y \\-z} [/mm]
Das ist eine Spiegelung an der z-achse längs der x-y Ebene oder?

Hallo,
Ja ich hab das Problem, dass ich das mit der wortwahl immer verwechsle. Vlt. hat da wer einen Tip.

LG,
quasimo

        
Bezug
Kurze Verständnisfrage/Spiegel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 06.09.2012
Autor: leduart

Hallo
man kann nicht "längs" etwas spiegeln.
(längs etwas kann man projizieren)
bei 1) zeichne einfach, woran wird gespiegelt? im [mm] R^2 [/mm] immer an einer Geraden
bei 2 dasselbe.im [mm] R^3 [/mm] spiegelt man i.A an einer Ebene.
hier wird sicher nicht an der z_achse gespiegelt, punkte auf den Spiegelgeraden und ebenen werden auf sich selbst abgebildet!
Gruss leduart

Bezug
                
Bezug
Kurze Verständnisfrage/Spiegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Do 06.09.2012
Autor: quasimo

1)
An der y-achse wird gespiegelt.

2)
An der x-y Ebene.

Das würde intuitiv sagen. Mich hat nur verunsichert da der Lehrer auch bei der Spiegelung immer sagt: Es wir an.. gespiegelt längs....Auch in den Aufgaben steht das so.
Mich wunderts, dass du sagst- dass es so nicht geht.

Bezug
                        
Bezug
Kurze Verständnisfrage/Spiegel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 06.09.2012
Autor: Teufel

Genau, deine Intuition ist richtig. Die Formulierung mit dem "längs" ist mir allerdings auch neu. Wenn ihr die Sprechweise aber benutzt, dann wird bei 1) an der y-Achse längs der x-Achse gespiegelt (vielleicht weil der Punkt entlang der x-Achse verschoben wird, wenn man ihn an der y-Achse spiegelt?) und bei  2) müsste demnach der Punkt an der x-y-Ebene längs der z-Achse gespiegelt werden, weil man den Punkt eben entlang dieser Richtung bei der Spiegelung verschiebt. Könnte das sein?

Bezug
                                
Bezug
Kurze Verständnisfrage/Spiegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Do 06.09.2012
Autor: quasimo

danke, ja das hört sich sehr logisch an .

Eine Frage dazu:
V = W [mm] \oplus [/mm] W'
[mm] \delta [/mm] : V->V Spiegelung an W längs W'
[mm] det(\delta)= (-1)^{dim(W')} [/mm] gilt laut Skriptum

Wenn ich nun im [mm] \IR^3 [/mm] an der x-y-Ebene längs der z-Achse spiegle
$ [mm] \delta \vektor{x \\ y \\z}=\vektor{x \\ y \\-z} [/mm] $
dan wäre in dem Falle dim(W')=1 also von der z-achse die dimension.
Dann wäre [mm] det(\delta)=-1 [/mm] also ist [mm] \delta [/mm] orientierungsumkehrend.

Hab ich das so richtig verstanden?


Bezug
                                        
Bezug
Kurze Verständnisfrage/Spiegel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 06.09.2012
Autor: Teufel

Genau. Und wenn du die Determinante selbst ausrechnet, kommt auch -1 raus.

Bezug
                                                
Bezug
Kurze Verständnisfrage/Spiegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Do 06.09.2012
Autor: quasimo

danke Teufel, *perfekt

LG,
quasimo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]