matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKurze Grenzwertfrage (Sinus)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Kurze Grenzwertfrage (Sinus)
Kurze Grenzwertfrage (Sinus) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Grenzwertfrage (Sinus): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 04.10.2006
Autor: DrRobotnik

Hallo,

ich habe eine kurze Frage zu folgender Reihe:

[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot sin(k)[/mm]

Dass [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm] den Grenzwert [mm]1 + i[/mm] hat, weiß ich. Aber mit [mm]\summe_{k=0}^{\infty} sin(k)[/mm] kann ich nichts anfangen. Sinus ist ja nicht konvergent, sondern bewegt sich periodisch zwischen -1 und 1. Welchen Einfluss hat der Sinus auf den Grenzwert der Reihe?

:-/

VG


        
Bezug
Kurze Grenzwertfrage (Sinus): Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Fr 06.10.2006
Autor: chrisno


> Hallo,
>  
> ich habe eine kurze Frage zu folgender Reihe:
>  
> [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot sin(k)[/mm]
>  
> Dass [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm]
> den Grenzwert [mm]1 + i[/mm] hat, weiß ich. Aber mit
> [mm]\summe_{k=0}^{\infty} sin(k)[/mm] kann ich nichts anfangen.

Das brauchst Du ja auch nicht. Du kannst die Summe ja nicht so zerlegen.

> Sinus ist ja nicht konvergent, sondern bewegt sich
> periodisch zwischen -1 und 1. Welchen Einfluss hat der
> Sinus auf den Grenzwert der Reihe?

Genau diese Beschränktheit des Sinus hilft Dir weiter. Damit kannst Du zumindest schon mal die Konvergenz der Reihe beweisen. Aus
[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm] ist jedes Glied größer (oder gleich) als in
[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot | sin(k)|[/mm] Wenn die Betragsfolge konvergiert, dann die alternierende erst recht.
(So genau erinnere ich mich nach 20 Jahren nicht mehr an die einzelnen Sätze)
Falls Du den Grenzwert brauchst, dann hast Du noch ein Problem.

>  
> :-/
>  
> VG
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]