matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurze Frage Supr. Inf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Kurze Frage Supr. Inf.
Kurze Frage Supr. Inf. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage Supr. Inf.: Korrektur
Status: (Frage) überfällig Status 
Datum: 15:28 Sa 22.01.2011
Autor: SolRakt

Hallo,

Da ich bald die Arbeit schreibe, möchte ich bei kleineren Sachen nochmal nachfragen. Und zwar geht es hierbei generell ums Vorgehen bzg. Supremum und Infimum.

Ich hab mal diese Aufgabe hier gefunden:

M := { [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm] | x,y [mm] \in \IR, [/mm] x,y [mm] \ge [/mm] 1}

Wenn ich davon jetzt Supr. Inf. Max. und Min. bestimmen möchte, kann ich das dann generell wie folgt machen (?):

Also, erstmal die Definition von Supremum, etwa S:

(1) S ist obere Schranke.
(2) [mm] \forall \varepsilon [/mm] > 0 [mm] \exists [/mm] x,y [mm] \in \IR: [/mm] S- [mm] \varepsilon [/mm] < x,y

So, ich hab erstmal abgeschätzt, also:

[mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm] < [mm] \bruch{1}{x} [/mm]

Vermutung ist: S ist 1

Also kurz beweisen, dass 1 obere Schranke ist:

[mm] \bruch{1}{x} \le [/mm] 1
1 [mm] \le [/mm] x

Aber das entspricht der Voraussetzung x [mm] \ge [/mm] 1 und somit ist S o.S.

zu (2). Kann man das IMMER über einen Widerspruchsbeweis machen? Salopp formuliert lass ich das [mm] \varepsilon [/mm] einfach weg, also

S < [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm]

Geht das generell?

Und wie kann ich jetzt weitermachen???



        
Bezug
Kurze Frage Supr. Inf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mo 24.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]