matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKurze Frage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Kurze Frage
Kurze Frage < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:12 Mi 31.01.2007
Autor: peter_d

Aufgabe
[mm] $\text{Sei V ein }\mathbb{R}-\text{Vektorraum und }f\in\text{End}_{\mathbb{R}}(V)\text{ mit } f^2=\text{id}$ [/mm]

[mm] $\text{Zeigen Sie, dass Spek}(f)\subseteq\{-1,1\}$ [/mm]

Hallo, ich bins noch mal.
Also, ich hab das jetzt mit vollst. Induktion versucht, aber das hat nicht wirklich funktioniert :(

Hoffe, jemand hat bessere Vorschläge und kann mir helfen.

Danke und Gruß

        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 Mi 31.01.2007
Autor: Walde

Hi Peter,

ich glaube Induktion macht hier wenig Sinn, ich wüsste nicht mal nach was man die machen soll.Hier mein Versuch:

Sei [mm] $\lambda\in [/mm] Spek(f)$, d.h. [mm] \lambda [/mm] ist Eigenwert zum Eigenvektor [mm] $x\not=0$,d.h. $f(x)=\lambda [/mm] x$ ausserdem [mm] $f^2=id$ [/mm] nach Vorraussetzung.

Es gilt dann:


[mm] $x=f^2(x)=f(f(x))=f(\lambda x)=\lambda f(x)=\lambda^2 [/mm] x$

Es gilt also [mm] $\lambda^2x=x$. [/mm]

Ich denke, man kann hier schon sehen, dass [mm] \lambda^2=1 [/mm] und somit für
[mm] \lambda \in \IR, [/mm] also [mm] \lambda=1 [/mm] oder [mm] \lambda=-1 [/mm] gelten muss.

Damit ist die Behauptung gezeigt.

LG walde

Bezug
                
Bezug
Kurze Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Mi 31.01.2007
Autor: peter_d

Ich danke dir vielmals, das war ja doch einfacher als ich je gedacht hätte :-) , und ich wollt da mit vollst. Ind. machen... :lol:

Danke und Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]