matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurze Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurze Ableitung
Kurze Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Ableitung: Lösung richtig?
Status: (Frage) beantwortet Status 
Datum: 17:57 Do 21.09.2006
Autor: DrRobotnik

Hallo,

ich möchte nur wissen, ob meine Ableitung richtig ist. Die Funktion lautet:

[mm]f(x) = e^{2x} \cdot \bruch{sin x}{\wurzel{x}}[/mm]

Die Ableitung von [mm]e^{2x}[/mm] müsste nach Kettenregel [mm]2e^{2x}[/mm] sein.

[mm]\left (\bruch{sinx}{\wurzel{x}} \right) ' = \bruch{cos x \cdot \wurzel{x} + sin x \cdot \bruch{1}{2}x^{-\bruch{1}{2}}}{x}[/mm] (Kann das hinhauen?)

Demnach müsste nach Produktregel [mm]2e^{2x} \cdot \bruch{sin x}{ \wurzel{x}} + e^{2x} \cdot \bruch{cos x \cdot \wurzel{x} + sinx \cdot \bruch{1}{2} x^{- \bruch{1}{2}}}{x}[/mm] herauskommen.

Ich bin mir da sehr unsicher, was die Lösung angeht.



        
Bezug
Kurze Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Do 21.09.2006
Autor: EvenSteven


> Hallo,
>  

Hoi

> ich möchte nur wissen, ob meine Ableitung richtig ist. Die
> Funktion lautet:
>  
> [mm]f(x) = e^{2x} \cdot \bruch{sin x}{\wurzel{x}}[/mm]
>  
> Die Ableitung von [mm]e^{2x}[/mm] müsste nach Kettenregel [mm]2e^{2x}[/mm]
> sein.
>  

Das stimmt so.

> [mm]\left (\bruch{sinx}{\wurzel{x}} \right) ' = \bruch{cos x \cdot \wurzel{x} + sin x \cdot \bruch{1}{2}x^{-\bruch{1}{2}}}{x}[/mm]
> (Kann das hinhauen?)

Nein, im Zähler ist die deine Summe eine Differenz nach Produktregel (als + durch - ersetzten). Der Rest ist korrekt.

>  
> Demnach müsste nach Produktregel [mm]2e^{2x} \cdot \bruch{sin x}{ \wurzel{x}} + e^{2x} \cdot \bruch{cos x \cdot \wurzel{x} + sinx \cdot \bruch{1}{2} x^{- \bruch{1}{2}}}{x}[/mm]
> herauskommen.
>  
> Ich bin mir da sehr unsicher, was die Lösung angeht.
>  

Abgesehen von dem oben genannten Fehler stimmt alles.

Gruss

EvenSteven


Bezug
                
Bezug
Kurze Ableitung: Merci
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Do 21.09.2006
Autor: DrRobotnik


> Nein, im Zähler ist die deine Summe eine Differenz nach
> Produktregel (als + durch - ersetzten). Der Rest ist
> korrekt.

Ja, hast recht.

> Abgesehen von dem oben genannten Fehler stimmt alles.

Vielen Dank! :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]