matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvenuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Kurvenuntersuchung
Kurvenuntersuchung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Di 25.05.2010
Autor: Ice-Man

Wenn ich jetzt eine gebrochen rationale Funktion auf einen Wendepunkt untersuche, dann setzte ich ja y''=0, und berechne den"x-Wert"...
Den setzte ich ja dann in y''' sein, um die "hinreichende Bedingung" zu erfüllen...
Dann setzte ich ja den berechneten "x-Wert" von y'' in die "Ausgangsgleichung" ein.
Mal angenommen, es würde dann im Nenner "Null stehen". Das ist ja nicht "erlaubt", bedeutet es also, das es keinen Wendepunkt gibt?

Danke


        
Bezug
Kurvenuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Di 25.05.2010
Autor: metalschulze

Hallo,

bedenke, dass x-Werte für die der Nenner = 0 wird nicht zum Definitionsbereich der Funktion gehören....
Frage beantwortet?

Gruß Christian

Bezug
                
Bezug
Kurvenuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Di 25.05.2010
Autor: Ice-Man

Nee, nicht so wirklich... ;)

Also ich hatt das hier bei der Funktion.

[mm] y=\bruch{x^{2}+2x+4}{x+2} [/mm]

Da ist ja schon der Definitionsbereich [mm] x\in\IR [/mm] [-2]

Und wenn ich jetzt nicht ganz falsch liege, dann kommt ja bei y''=-2 heraus.

Aber da das ja nicht zum DB gehört, kann ich also sagen, das es keinen WP gibt?

Bezug
                        
Bezug
Kurvenuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 25.05.2010
Autor: metalschulze

Ja genau! [daumenhoch],
Wendepunkt kann ja nur an einer Stelle sein, die auch zum [mm] D_f [/mm] gehört oder nicht?

Gruß Christian

PS: ich habs nicht nachgerechnet, ob eine Wendestelle bei -2 ist....

Bezug
                                
Bezug
Kurvenuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Di 25.05.2010
Autor: Ice-Man

Ja, das klingt logisch ;).

Danke dir ;)

Bezug
                                        
Bezug
Kurvenuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Di 25.05.2010
Autor: metalschulze

Ich habs jetzt doch nachgerechnet, und hab

y'' = [mm] \frac{8}{(x+2)^3} [/mm] raus.....nix mit Wendepunkt, aber aus einem anderen Grund...

Bezug
                                                
Bezug
Kurvenuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 25.05.2010
Autor: Ice-Man

Also ich hatt als [mm] y''=\bruch{8x+16}{(x+2)^{4}} [/mm] heraus.

Hmmm, das ist ja nicht "das gleiche" wie

[mm] y''=\bruch{8}{(x+2)^{3}} [/mm]
richtig?

Bezug
                                                        
Bezug
Kurvenuntersuchung: nicht dasselbe
Status: (Antwort) fertig Status 
Datum: 21:51 Di 25.05.2010
Autor: Loddar

Hallo Ice-Man!


Das hast Du richtig erkannt: das ist nicht dasselbe.

Dann solltest Du Deine Rechnung hier vorführen und genauestens posten.


Gruß
Loddar


Bezug
                                                                
Bezug
Kurvenuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 25.05.2010
Autor: Ice-Man

Dann probieren wir es mal ;)....

[mm] y=\bruch{x^{2}+2x+4}{x+2} [/mm]

[mm] y'=\bruch{2x+2(x+2)-x^{2}-2x-4}{(x+2)^{2}}=\bruch{2x^{2}+4x+2x+4-x^{2}-2x-4}{(x+2)^{2}}=\bruch{x^{2}+4x}{(x+2)^{2}} [/mm]

[mm] y''=\bruch{2x+4(x^{2}+4x+4)-[x^{2}+4x(2x+4)]}{(x+2)^{4}}=\bruch{2x^{3}+8x^{2}+8x+4x^{2}+16x+16-2x^{3}-4x^{2}-8x^{2}-16x}{(x+2)^{4}}=\bruch{8x+16}{(x+2)^{4}} [/mm]


Hmmm... Wo mach ich denn meinen Fehler?? ;)

Bezug
                                                                        
Bezug
Kurvenuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 25.05.2010
Autor: leduart

Hallo
Du rechnest zu schnell Klammern aus, und du setzt zu wenige!

> Dann probieren wir es mal ;)....
>  
> [mm]y=\bruch{x^{2}+2x+4}{x+2}[/mm]
>  
> [mm]y'=\bruch{2x+2(x+2)-x^{2}-2x-4}{(x+2)^{2}}=\bruch{2x^{2}+4x+2x+4-x^{2}-2x-4}{(x+2)^{2}}=\bruch{x^{2}+4x}{(x+2)^{2}}[/mm]

richtig  

> [mm]y''=\bruch{2x+4(x^{2}+4x+4)-[x^{2}+4x(2x+4)]}{(x+2)^{4}}= richtig y''=\bruch{(2x+4)(x+2)^2-[(x^{2}+4x)*2*(x+2)]}{(x+2)^{4}} jetzt erst durch x+2 kürzen! (wegen x\ne-2) bleibt \bruch{(2x+4)(x+2)-[(x^{2}+4x)*2*]}{(x+2)^{3}}= \bruch{(2x^2+8x+8-[2x^2+8x]}{(x+2)^{3}} den Rest überlass ich dir Durch deins komm ich nicht durch! >\bruch{2x^{3}+8x^{2}+8x+4x^{2}+16x+16-2x^{3}-4x^{2}-8x^{2}-16x}{(x+2)^{4}}=\bruch{8x+16}{(x+2)^{4}}[/mm]
>  

Gruss leduart

Bezug
                                                        
Bezug
Kurvenuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Di 25.05.2010
Autor: leduart

Hallo
ausser bei x=-2 kann man kürzen, und es ist das gleiche. bei x=-2 hat man 0/0 aber es liegt ja eh nicht im Def.Bereich also brauchst dus nicht ansehen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]