matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKurventangente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Kurventangente
Kurventangente < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurventangente: Frage
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 02.04.2005
Autor: Ekiara

hab die Funktion f(x)=2x*e^-x          f'(x)=e^-x(2-2x)
soll die gleichung der Kurventangente im Ursprung bestimmen mir is klar das der Ursprung die koordinaten 0/0 hat. müsste die gleichung der Tangente dann t=x sein?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurventangente: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Sa 02.04.2005
Autor: Mehmet

hallo
also man will von dir eine Tangente an f(x) und man sagt, dass diese durch den Ursprung verläuft.
Die allgemeine Tangentenformel:  y=mx+b
Aufgrund dessen, dass die Tangente durch den ursprung geht ist b=0.
also  : y=mx
Nun fehlt uns die Steigung. Du hast ja die Ableitung gebildet, ich gehe davon aus sie ist richtig, und nun weißt du ja dass kurve und Tangente, wie schon der name sagt sich tangiert und tangieren an einem Punkt heißt, gleiche Steigung an einem Punkt. Und hier geht es um (0 |0) das heisst der x- Wert ist 0. Wir brauchen nun also die Steigung von deinem f(x) an der stelle 0.
Und bilden deshalb : f´(0). Und diese Steigung an dieser stelle entspricht der Steigung der Tangenten.D.h. y=f´(0)x

Gruß Mehmet

Bezug
                
Bezug
Kurventangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Sa 02.04.2005
Autor: Ekiara

bloß soll ich das mit der Tangentengleichung (t(x)=f(x0)+f'(x0)*(x-x0))lösen...

Bezug
                        
Bezug
Kurventangente: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 02.04.2005
Autor: Mehmet

hallo,
also die Tangenformel hier nochmal:

[mm] g(x)=f´(x_0)(x-x_0)+f(x_0) [/mm]

Die brauchst du ja hier nicht, denn du hast ja in der Aufgabenstellung gegeben, dass der Ursprung durch den ja deine Tangente verläuft, gleichzeitig ja Berührpunkt von Tangente und Kurve ist.
das heißt der vereinfachte Ansatz den ich dir eben geliefert habe ist ausreichend.

Gruß Mehmet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]