matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Kurvenschar
Kurvenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Di 21.02.2012
Autor: Julian92

Hallo Leute,

ich sitze nun schon seit einiger Zeit an folgender Aufgabe:

Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau dann keine Nullstelle, wenn
a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

Fa(x)= [mm] ln(x^2)+a/x [/mm]      x>0


Mein Ansatz:
Zunächst einmal muss das globale Minimum der Funktion ja über der x-Achse liegen, damit die Funktion keine Nullstellen hat.
Globales Minimum ( [mm] a/2|ln((a^2)/4)+2) [/mm]
Also: [mm] ln((a^2/4)+2)>0 [/mm]
Wenn ich nun die e-Funktion anwende erhalte ich: [mm] (a^2/4)+e^2>1. [/mm]
Ich habe leider keine Idee wie ich nun auf a*e>2 komme.

Ich hoffe es kann mir jemand helfen :)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.matheboard.de/thread.php?threadid=483892


        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Di 21.02.2012
Autor: abakus


> Hallo Leute,
>  
> ich sitze nun schon seit einiger Zeit an folgender
> Aufgabe:
>  
> Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau
> dann keine Nullstelle, wenn
>  a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

>  
> Fa(x)= [mm]ln(x^2)+a/x[/mm]      x>0
>  
>
> Mein Ansatz:
>  Zunächst einmal muss das globale Minimum der Funktion ja
> über der x-Achse liegen, damit die Funktion keine
> Nullstellen hat.
>  Globales Minimum ( [mm]a/2|ln((a^2)/4)+2)[/mm]
>  Also: [mm]ln((a^2/4)+2)>0[/mm]
>  Wenn ich nun die e-Funktion anwende erhalte ich:
> [mm](a^2/4)+e^2>1.[/mm]

Hallo,
ich habe das alles nicht nachgerechnet.
Falls alles richtig ist, hast du also
[mm](\bruch{a}{2})^2+e^2<1[/mm]
Beidseitige Subtraktion von ae liefert
[mm](\bruch{a}{2})^2-ae+e^2<1-ae[/mm]
[mm](\bruch{a}{2}-e)^2<1-ae[/mm]
Das ist auf alle Fälle NICHT möglich, wenn 1-ae Null oder negativ ist.

Gruß Abakus


>  Ich habe leider keine Idee wie ich nun auf a*e>2 komme.
>  
> Ich hoffe es kann mir jemand helfen :)
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?threadid=483892
>  


Bezug
        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Di 21.02.2012
Autor: Melvissimo

Hallo Julian92,

> Hallo Leute,
>  
> ich sitze nun schon seit einiger Zeit an folgender
> Aufgabe:
>  
> Beweisen Sie: Für a > 0 besitzt eine Funktion Fa genau
> dann keine Nullstelle, wenn
>  a*e > 2 gilt. (Hierbei ist e die Euler?sche Zahl.)

>  
> Fa(x)= [mm]ln(x^2)+a/x[/mm]      x>0
>  
>
> Mein Ansatz:
>  Zunächst einmal muss das globale Minimum der Funktion ja
> über der x-Achse liegen, damit die Funktion keine
> Nullstellen hat.
>  Globales Minimum ( [mm]a/2|ln((a^2)/4)+2)[/mm] [ok]
>  Also: [mm]ln((a^2/4)+2)>0[/mm] [notok]

Hier darfst du doch nicht einfach die 2 mit in den Logarithmus ziehen. Dein Extrempunkt hat nach wie vor die y-Kordinate [mm] ln((a^2)/4)+2[/mm].

Nun gelte [mm]a*e>2 \gdw a>\bruch{2}{e}[/mm]. Das setzt du in die y-Koordinate ein:
[mm] ln(a^2/4)+2 > ln((\bruch{2}{e})^2/4)+2 = ln(\bruch{1}{e^2})+2 = -2 * ln(e) + 2 = 0[/mm]. Du warst ziemlich dicht dran ;)


>  Wenn ich nun die e-Funktion anwende erhalte ich:
> [mm](a^2/4)+e^2>1.[/mm]
>  Ich habe leider keine Idee wie ich nun auf a*e>2 komme.
>  
> Ich hoffe es kann mir jemand helfen :)
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?threadid=483892
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]