matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Kurvenschar
Kurvenschar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: Extremstellen
Status: (Frage) beantwortet Status 
Datum: 13:43 So 08.05.2005
Autor: Michael99

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Helfe gerade einer Bekannten mit folgender Aufgabe:

Kurvendiskussion der Schar:  fa(x)= [mm] (x-a)*(x+1)^2 [/mm]

Komm beim Nullsetzen der 1. Ableitung auf eine etwas komische Extremstelle:  x1= 2/3a - 1/3
Die zweite Extremstelle ist bei x2= -1
Benötigt man bei x1 eine Fallunterscheidung, oder ists ein Rechenfehler meinerseits und es geht besser auf?


        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 08.05.2005
Autor: Zwerglein

Hi, Michael,

>  
> Kurvendiskussion der Schar:  fa(x)= [mm](x-a)*(x+1)^2[/mm]
>  
> Komm beim Nullsetzen der 1. Ableitung auf eine etwas
> komische Extremstelle:  x1= 2/3a - 1/3
>  Die zweite Extremstelle ist bei x2= -1

Stimmt aber, auch wenn's komisch aussieht!
Hab's nachgerechnet!

>  Benötigt man bei x1 eine Fallunterscheidung, oder ists ein
> Rechenfehler meinerseits und es geht besser auf?

Ne Fallunterscheidung brauchst Du schon, da Du für a=-1 keine Extremstelle, sondern eine Terrassenstelle (dreifache Nullstelle der Funktion f) bekommst.
Ansonsten aber gibt's 2 Extremstellen:
Für a < -1 ist x1 die Maximalstelle, x2=-1 die Minimalstelle,
für a > -1 ist es genau umgekehrt.    




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]