matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Kurvenschar
Kurvenschar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: ???
Status: (Frage) beantwortet Status 
Datum: 01:01 Mo 07.02.2005
Autor: sonnenschein3

Aufgabe:

Eine Schar von Funktionen ist gegeben durch

f t (x) = t*(x+2)*(x-4)²   , x [mm] \in \IR [/mm] , t > 0

1) Zeigen Sie, dass es zwei Punkte gibt, durch die jede Scharkurve geht.

2) Bestimmen Sie die Gleichung des geometrischen Ortes aller Hochpunkte.

könnt ihr mir da helfen?
: )




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 01:17 Mo 07.02.2005
Autor: Max

Du sollst zeigen, dass egal welchen Wert $t$ hat alle Kurven [mm] $f_t$ [/mm] trotzdem immer durch zwei gemeinsame Punkte verlaufen. Du kannst die Punkte herausfinden, indem du die gemeinsamen Punkte (=Schnittpunkte) zweier Kurven aus der Schar bestimmst. Also [mm] $f_{t_1}(x)=f_{t_2}(x)$. [/mm]

Für die Gleichung der Hochpunkte solltest du erst einmal die Hochpunkte [mm] $H_t$ [/mm] in Abhängigkeit von $t$ bestimmen. Danach hilft sicher die Suchfunktion, da in den letzen Tagen sehr viele Aufgaben zu Kurvenscharen besprochen wurden.

Gruß Brackhaus

Bezug
                
Bezug
Kurvenschar: nochmal zu 1)
Status: (Frage) beantwortet Status 
Datum: 01:41 Mo 07.02.2005
Autor: sonnenschein3

soweit schon mal danke..
mir ist allerdings noch etwas unklar..
ich kann ja für  [mm] {t_1} [/mm] und für [mm] {t_2} [/mm] nicht einfach eine beliebige zahl einsetzen, da ich ja sonst nur für zwei scharkurven und nicht für alle scharkurven zeigen würde, dass sie alle zwei gemeinsame punkte haben... oder?
???
hmm ?


Bezug
                        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Mo 07.02.2005
Autor: Sigrid

hallo sonnenschein,

> soweit schon mal danke..
> mir ist allerdings noch etwas unklar..
>  ich kann ja für  [mm]{t_1}[/mm] und für [mm]{t_2}[/mm] nicht einfach eine
> beliebige zahl einsetzen, da ich ja sonst nur für zwei
> scharkurven und nicht für alle scharkurven zeigen würde,
> dass sie alle zwei gemeinsame punkte haben... oder?

[ok] richtig. Du musst schon allgemein mit [mm] t_1 [/mm] und [mm] t_2 [/mm] rechnen. Wenn du zwei Schnittpunkte erhälst, die unabhängig von [mm] t_1 [/mm] und [mm] t_2 [/mm] unabhängig sind, dann hast du deinen Nachweis.
Wenn du einfach zwei Zahlen einsetzt, musst du anschließend noch zeigen, dass alle Kurven der Schar durch die ermittelten Schnittpunkte gehen.

>  ???
>  hmm ?
>  

Alles klar?

Gruß Sigrid

>  



Bezug
                                
Bezug
Kurvenschar: ?
Status: (Frage) beantwortet Status 
Datum: 09:50 Mo 07.02.2005
Autor: sonnenschein3

mir ist immer noch nicht alles klar.. (  t´schuldigung :) )
also wenn ich in abhängigkeit von [mm] {t_1} [/mm] und [mm] {t_2} [/mm] die Kurvenschar schneiden lasse, dann kommt bei mir folgendes raus:
[mm] {t_1}x³- 6{t_1}x²+32{t_1}= {t_2}x³-6{t_2}x²+32{t_2} [/mm]
bzw.

[mm] {t_1}x³- 6{t_1}x²+32{t_1}-{t_2}x³+6{t_2}x²-32{t_2}=0 [/mm]

und wie gehts dann weiter?


Bezug
                                        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Mo 07.02.2005
Autor: informix

Hallo Sonnenschein,
können wir gut gebrauchen ;-) [willkommenmr]

> mir ist immer noch nicht alles klar.. (  t´schuldigung :)
> )
>  also wenn ich in abhängigkeit von [mm]{t_1}[/mm] und [mm]{t_2}[/mm] die
> Kurvenschar schneiden lasse, dann kommt bei mir folgendes
> raus:
>  [mm]{t_1}x³- 6{t_1}x²+32{t_1}= {t_2}x³-6{t_2}x²+32{t_2}[/mm]
>  
> bzw.
>  
> [mm]{t_1}x³- 6{t_1}x²+32{t_1}-{t_2}x³+6{t_2}x²-32{t_2}=0[/mm]
>  

jetzt löst du diese Gleichung nach x auf, um die Schnittstellen herauszufinden (denke daran, [mm] t_1 [/mm] und [mm] t_2 [/mm] sind ganz normale Zahlen!)
[mm] $(t_1-t_2)x^3 [/mm] - 6 [mm] (t_1-t_2)x^2 [/mm] = [mm] -32(t_1-t_2)$ [/mm]
Erkennst du jetzt, dass die Schnittstellen nicht von der Wahl der [mm] t_i [/mm] abhängen, solange sie nicht gleich sind?


Bezug
        
Bezug
Kurvenschar: Nullstellen
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 07.02.2005
Autor: leduart

Hallo
Guck dir mal die Nullstellen an! Wie hängen sie von t ab?
Wenn du das siehst, bist du mit a fertig! Immer erst die Funktion genau auf besondere Eigenschaften angucken! Das vereinfacht oft vieles. Und euer Lehrer will vielleicht grade das erreichen.
Dasselbe gilt fast für die erste Ableitung!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]