matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenKurvenintegral im Vektorfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrieren und Differenzieren" - Kurvenintegral im Vektorfeld
Kurvenintegral im Vektorfeld < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral im Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:14 Di 19.06.2012
Autor: lzaman

Aufgabe
Vektorfeld [mm]\vec{F}:\IR^2\to \IR^2[/mm] ist gegeben durch

[mm]\vec{F}(x,y)=\vektor{x+1 \\ x^2-y^2+x}[/mm]

Das Kurvenintegral [mm]\integral_{\gamma} \vec{F} \cdot dx[/mm] soll bestimmt werden, dabei parametrisiert [mm]\gamma[/mm] eine geradlininge Verbindung von [mm]\vec{P}=(2,2)^T[/mm] nach [mm]\vec{Q}=(3,1)^T[/mm]

(Hinweis: Das Vektorfeld [mm]\vec{F}[/mm] besitzt kein Potential)



Hallo zusammen. Meine Idee zur dieser Aufgabe ist folgende:

1: Parametrisierung der Strecke mit [mm]\vec{P}+t \left(\vec{Q}-\vec{P}\right), \; 0\leq t\leq 1[/mm]


[mm]\gamma(t)=\vektor{2 \\ 2}+t \left[ \vektor{3 \\ 1}-\vektor{2 \\ 2}\right]=\vektor{2+t \\ 2-t} \ \; 0\leq t\leq 1[/mm]

dann ist:

[mm]\gamma'(t)=\vektor{1 \\ -1}[/mm]



2. Kurvenintegral 2. Art berechnen, da kein Potential existiert:


[mm]\integral_{0}^{1}{\vec{F}(\gamma(t))\cdot \gamma'(t) \ dt}=\integral_{0}^{1}{\vektor{3+t \\ (2+t)^2-(2-t)^2+(2+t)}\vektor{1 \\ -1} dt}[/mm]

[mm]=\integral_{0}^{1}{\vektor{3+t \\ 2+9t}\vektor{1 \\ -1}dt}=\integral_{0}^{1}{3+t-2-9t \ dt}[/mm]

[mm]=\integral_{0}^{1}{1-8t \ dt}=t-4t^2 \bigg|_0^1=-3[/mm]

Kann man das so machen, ist das alles nachvollziehbar? Vor allem geht es mir um das Konzept und besitzt jede Strecke für t das Intervall [0,1] ???

Danke



        
Bezug
Kurvenintegral im Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 05:09 Di 19.06.2012
Autor: fred97

Alles korrekt

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]