matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKurvenintegral Kegeldeckfläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Kurvenintegral Kegeldeckfläche
Kurvenintegral Kegeldeckfläche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral Kegeldeckfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Do 24.04.2014
Autor: racy90

Hallo

Ich habe  folgenden Kegel  K={ (x,y,z): [mm] x^2+y^2 \le z^2 [/mm] ,0 [mm] \le [/mm] z [mm] \le [/mm] 1 }
und das Vektorfeld [mm] v=\vektor{y \\ z \\ x} [/mm] gegeben.

Ich soll nun das Kurvenintegral [mm] \integral_{C}^{}{v dx} [/mm] berechnen wobei C die Kurve bezeichnet welche die Deckfläche von K berandet.

Die Deckfläche ist ja ein Kreis mit Radius 1 und bei z=1

also müsste meine Parametrisierung lauten [mm] x=\vektor{cos(x) \\ sin(x) \\ 1} [/mm]
[mm] x'=\vektor{-sin(x) \\ cos(x) \\ 0} [/mm]

x einsetzen in v liefert mir folgendes Ergebnis [mm] \vektor{sin(x) \\ 1 \\ cos(x)} [/mm]

Nun das Integral : [mm] \integral_{0}^{2 \pi}{\vektor{sin(x) \\ 1 \\ cos(x)}\vektor{-sin(x) \\ cos(x) \\ 0} dx} [/mm]


        
Bezug
Kurvenintegral Kegeldeckfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 24.04.2014
Autor: leduart

Hallo
Deine Bezeichnungen sind sehr irritierend!
du kannst doch x nicht doppelt verwenden, oder gar dreifach
a) als Ortsvektor, b) als Komponente von a) c) als Parameter.
also nimm als Parameter t
dein C: [mm] c(t)=\vektor{cos(t)\\ sin(t),1) dein Vektorfeld eingesetzt ist mit deinen Bezeichnungen richtig, nur msste man dx=c'(t)dt setzen. nun das Skalarprodukt ausführen und dann integrieren }was [/mm] genau ist deine Frage?
Gruss leduart

Bezug
                
Bezug
Kurvenintegral Kegeldeckfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 24.04.2014
Autor: racy90

Gut dann halt so:

[mm] c(t)=\vektor{cos(t) \\ sin(t) \\ 1} [/mm]
[mm] c'(t)=\vektor{-sin(t) \\ cos(t)\\0} [/mm]

c  in v --> [mm] \vektor{sin(t) \\ 1 \\ cos(t)} [/mm]

[mm] \integral_{0}^{2 \pi}{\vektor{sin(t) \\ 1 \\ cos(t)}\vektor{-sin(t) \\ cos(t)\\0} dx} [/mm] = [mm] \integral_{0}^{2 \pi}{-sin^2(t)+cos(t) dx} [/mm]

Ergebnis nach etwas rechnen = - [mm] \pi [/mm]

Stimmt das Ergebnis?





Bezug
                        
Bezug
Kurvenintegral Kegeldeckfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 24.04.2014
Autor: leduart

Hallo
richtig, im letzten Integral dt statt dx
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]