matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrieren und Differenzieren" - Kurvenintegral
Kurvenintegral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:35 Mo 27.06.2011
Autor: Clawfinger

Aufgabe
Gegeben ist eine Kurve in der Parameterdarstellung x(t) = a cos(t), y(t) = b sin(t).
a) Zeichnen Sie mit Hilfe einer geeigneten Wertetabelle den Verlauf der Kurve mit a = 5 und b = 4. In welchem Intervall muss variiert werden, damit eine geschlossene Kurve entsteht?
b) Berechnen Sie das Kurvenintegral dF über die geschlossene Kurve [mm] \integral_{m}^{n}{dF}=\integral_{m}^{n}{y(t)dx+x(t)dy} [/mm]

Hallo,
also eigentlich glaube ich zwar die Aufgabe gelöst zu haben, allerdings irritiert mich das Ergebnis dermaßen, dass ich die Aufgabe hier mal stellen möchte, um zu sehen, ob ich es nicht doch falsch gemacht habe.

Also als erstes habe ich halt eine Wertetabelle von 0 bis [mm] 2\pi [/mm] gemacht, bei der ersichtlich wird, dass ein Kreis entsteht. Also habe ich als Intervall 0 bis [mm] 2\pi. [/mm]

Für b habe ich dann für y(t) und x(t) die gegebenen Gleichungen eingesetzt, um in dem Integral nur noch die Variable t zu haben. Dann habe ich die Ableitungen gebildet und für dx sowie dy eingesetzt. So kommt für mich dann die Gleichung:
[mm] \integral_{0}^{2\pi}{-20sin^2(t)dt}+\integral_{0}^{2\pi}{20cos^2(t)dt} [/mm]
heraus.
Integriert ergibt das:
[mm] [-10(t-sin(t)cos(t))]^{2\pi}_{0}+[10(t+sin(t)cos(t))]^{2\pi}_{0} [/mm]

Jetzt kann man einsetzen, oder schon von alleine sehen, dass das Ergebnis 0 wäre. Nun kommt mir aber eben das sehr merkwürdig vor. Beschreibt denn das Integral nicht die Fläche unter der Kurve? Wie kann denn dann diese Fläche nun aber 0 sein?
Hoffe mir kann jemand eine Antwort geben und bedanke mich schonmal.
lg

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 27.06.2011
Autor: MathePower

Hallo Clawfinger,

> Gegeben ist eine Kurve in der Parameterdarstellung x(t) = a
> cos(t), y(t) = b sin(t).
>  a) Zeichnen Sie mit Hilfe einer geeigneten Wertetabelle
> den Verlauf der Kurve mit a = 5 und b = 4. In welchem
> Intervall muss variiert werden, damit eine geschlossene
> Kurve entsteht?
>  b) Berechnen Sie das Kurvenintegral dF über die
> geschlossene Kurve
> [mm]\integral_{m}^{n}{dF}=\integral_{m}^{n}{y(t)dx+x(t)dy}[/mm]
>  Hallo,
>  also eigentlich glaube ich zwar die Aufgabe gelöst zu
> haben, allerdings irritiert mich das Ergebnis dermaßen,
> dass ich die Aufgabe hier mal stellen möchte, um zu sehen,
> ob ich es nicht doch falsch gemacht habe.
>  
> Also als erstes habe ich halt eine Wertetabelle von 0 bis
> [mm]2\pi[/mm] gemacht, bei der ersichtlich wird, dass ein Kreis
> entsteht. Also habe ich als Intervall 0 bis [mm]2\pi.[/mm]
>  
> Für b habe ich dann für y(t) und x(t) die gegebenen
> Gleichungen eingesetzt, um in dem Integral nur noch die
> Variable t zu haben. Dann habe ich die Ableitungen gebildet
> und für dx sowie dy eingesetzt. So kommt für mich dann
> die Gleichung:
>  
> [mm]\integral_{0}^{2\pi}{-20sin^2(t)dt}+\integral_{0}^{2\pi}{20cos^2(t)dt}[/mm]
>  heraus.
>  Integriert ergibt das:
>  
> [mm][-10(t-sin(t)cos(t))]^{2\pi}_{0}+[10(t+sin(t)cos(t))]^{2\pi}_{0}[/mm]
>  
> Jetzt kann man einsetzen, oder schon von alleine sehen,
> dass das Ergebnis 0 wäre. Nun kommt mir aber eben das sehr
> merkwürdig vor. Beschreibt denn das Integral nicht die
> Fläche unter der Kurve? Wie kann denn dann diese Fläche
> nun aber 0 sein?


Die Kurve ist symmetrisch zur x-Achse und zur y-Achse.


>  Hoffe mir kann jemand eine Antwort geben und bedanke mich
> schonmal.
>  lg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]