matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral
Kurvenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Do 25.03.2010
Autor: Garfield_II

Aufgabe
Berechnen SIe die Länge der Kurve mit der Parameterdarstellung

{(x,y,z): x=3t, [mm] y=3t^2, z=2t^3} [/mm]

zwischen den Punkten (3,3,2) (6,12,16)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,


ich hab keine Ahnung mehr, wie ich so etwas angehe (hatte ich mal vor Jahren).
Kann mir da mal wieder jemand auf die Sprünge helfen? Wäre echt lieb. Ist wichtig, dass ich das heute noch hinbekomme.







        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Do 25.03.2010
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Garfield_II,


> Berechnen SIe die Länge der Kurve mit der

> Parameterdarstellung
>  
> {(x,y,z): x=3t, [mm]y=3t^2, z=2t^3}[/mm]
>  
> zwischen den Punkten (3,3,2) (6,12,16)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
>
> ich hab keine Ahnung mehr, wie ich so etwas angehe (hatte
> ich mal vor Jahren).
>  Kann mir da mal wieder jemand auf die Sprünge helfen?
> Wäre echt lieb. Ist wichtig, dass ich das heute noch
> hinbekomme.
>  
>


Die Länge der Kurve zwischen [mm]t_{1}[/mm] und  [mm]t_{2}[/mm] ergibt sich zu:

[mm]L=\integral_{t_{1}}^{t_{2}}{\wurzel{ \dot{x}^{2}\left(t\right) + \dot{y}^{2}\left(t\right) +\dot{z}^{2}\left(t\right)} \ dt}[/mm]


Gruss
MathePower

Bezug
                
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Do 25.03.2010
Autor: Garfield_II

Vielen Dank für die Antwort, leider ist sie genauso knapp wie mein Vorwissen, so daas ich nicht wirklich draus schlau geworden bin.

Bezug
                        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Do 25.03.2010
Autor: Tyskie84

Hallo,

das ist die sogennante Bogenlänge. [mm] \dot{x}(t) [/mm] ist nichts anderes als [mm] \bruch{dx}{dt}. [/mm] Leite also x nach t ab. Für die anderen parameter entsprechend. Quadriere so wie es in der Formel steht. Ziehe die Wurzel und berechene nach Intergral.

[hut] Gruß

Bezug
                                
Bezug
Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Do 25.03.2010
Autor: Garfield_II

ach so langsam wirds klarer.

vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]