matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral
Kurvenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 23.09.2009
Autor: Skalar85

Aufgabe
Entscheiden Sie ob folgende Aussage wahr oder falsch ist:
Das Kurvenintegral eines wirbelfreien differenzierbaren Vektorfeldes über
eine geschlossene Kurve ist immer gleich 0.

Warum stimmt diese Aussage nicht?


        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 23.09.2009
Autor: rainerS

Hallo!

> Entscheiden Sie ob folgende Aussage wahr oder falsch ist:
>  Das Kurvenintegral eines wirbelfreien differenzierbaren
> Vektorfeldes über
>  eine geschlossene Kurve ist immer gleich 0.
>  Warum stimmt diese Aussage nicht?

Sie ist unpräzise: das Vektorfeld muss auf der gesamten von der Kurve eingeschlossenen Fläche definiert und diff'bar sein.

Gegenbeispiel: das zweidimensionale Vektorfeld

[mm] F=\vektor{\dfrac{-y}{x^2+y^2}\\[2mm] \dfrac{x}{x^2+y^2}} [/mm], [mm] (x,y)\not=(0,0) [/mm]

ist wirbelfrei, denn

[mm] \bruch{\partial F_y}{\partial x} - \bruch{\partial F_x}{\partial y} = 0[/mm].

Aber da es im Nullpunkt weder definiert noch stetig fortsetzbar ist, lässt sich die Aussage so nicht treffen.

Die Aussage kann man zum Beispiel so ergänzen:

Das Kurvenintegral eines im gesamten Raum wirbelfreien differenzierbaren
Vektorfeldes über eine geschlossene Kurve ist immer gleich 0.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]