matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Kurvenintegral
Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 26.02.2009
Autor: hayabusa

Aufgabe
Berechne [mm]\int_\alpha z*e^{z^2}dz[/mm] für [mm]\alpha[/mm].

[mm]\alpha[/mm] ist das Stück der Parabel mit der Gleichung [mm]y=x^2[/mm] zwischen den Punkten [mm]0[/mm] und [mm]1+i[/mm].

Mein Ansatz lautet :
[mm]\alpha(t)=t+t^2i, t\in[0,1]\subset \IR [/mm]

[mm] \alpha'(t)=1+2ti[/mm]

[mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]

Weiter weiß ich nicht. Es soll nicht der Residuensatz benutzt werden. Kann man vielleicht den Weg [mm]\alpha(t)[/mm] anders parametrisieren, sodass ein einfacheres Integral entsteht?

Gruß,
hayabusa.

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Do 26.02.2009
Autor: rainerS

Hallo!

> Berechne [mm]\int_\alpha z*e^{z^2}dz[/mm] für [mm]\alpha[/mm].
>  
> [mm]\alpha[/mm] ist das Stück der Parabel mit der Gleichung [mm]y=x^2[/mm]
> zwischen den Punkten [mm]0[/mm] und [mm]1+i[/mm].
>  Mein Ansatz lautet :
>  [mm]\alpha(t)=t+t^2i, t\in[0,1]\subset \IR [/mm]
>  
> [mm]\alpha'(t)=1+2ti[/mm]
>  
> [mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]
>  
> Weiter weiß ich nicht. Es soll nicht der Residuensatz
> benutzt werden. Kann man vielleicht den Weg [mm]\alpha(t)[/mm]
> anders parametrisieren, sodass ein einfacheres Integral
> entsteht?

Der Integrand [mm] $f(z)=z*e^{z^2}$ [/mm] ist in ganz [mm] $\IC$ [/mm] holomorph, daher gibt es eine komplexe Stammfunktion F mit $F'(z)=f(z)$, und das Kurvenintegral hängt nur von Anfangs- und Endpunkt ab:

[mm] \int_\alpha z*e^{z^2}dz = F(\alpha(1)) -F(\alpha(0)) = F(1+i)-F(0) [/mm].

Du musst also nur die Stammfunktion finden.

Viele Grüße
   Rainer

Bezug
                
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Fr 27.02.2009
Autor: hayabusa

Leider weiß ich nicht, wie ich die Stammfunktion bei solch einem Integral finden soll.  
> > [mm]\int_\alpha z*e^{z^2}dz=\int_0^1 t(1+ti)*e^{t^2(1+ti)^2}*(1+2ti)dt=...[/mm]

Kann man den Integranden noch vereinfachen?

Gruß,
hayabusa.


Bezug
                        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 27.02.2009
Autor: reverend

Hallo hayabusa,

warum gehst Du denn nicht auf den Hinweis von rainerS ein? Die Stammfunktion [mm] \bruch{1}{2}e^{z^2} [/mm] ist doch schnell gefunden, und ich sehe nicht, inwiefern Du den Residuensatz dazu brauchst.

Dein Ansatz ist eher kompliziert zu rechnen. In jedem Fall würde ich den Integranden in Real- und Imaginärteil auftrennen. Was dann jeweils bleibt, ist deutlich einfacher zu erledigen.

Grüße
reverend

Bezug
                                
Bezug
Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:38 Fr 27.02.2009
Autor: hayabusa

Stimmt, jetzt sehe ich es auch !
Danke an euch

hayabusa



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]