Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechne für die Halbkreislinie [mm] \sigma_r(t)=re^{it}, 0\le t\le\pi, [/mm] r>0, berechne [mm] \limes_{r\rightarrow\infty}\int_{\sigma_r(t)}e^{-z^2}dz [/mm] |
Tja, die Formel für ein Kurvenintegral ist ja einfach: ich setze die Parametrisierung für z ein, leite [mm] \sigma_r [/mm] ab und füge dies als Faktor hinzu. Dann muss ich von Anfangs- bis Endpunkt über t integrieren. Aber [mm] e^{-({re^{it}})^2} [/mm] zu integrieren...
Gibt es nicht einen netten Trick, wie man das besser hinbekommt?
|
|
|
|
Der Integrand ist holomorph in [mm]\mathbb{C}[/mm], das Integral ist daher wegunabhängig. Somit gilt
[mm]\int_{\sigma_r}~\operatorname{e}^{-z^2}~\mathrm{d}z \ = \ - \int_{-r}^r~\operatorname{e}^{-x^2}~\mathrm{d}x[/mm]
wobei rechts ein gewöhnliches reelles Integral steht. Und für [mm]r \to \infty[/mm] sollte dir das bekannt vorkommen, z.B. aus der Wahrscheinlichkeitsrechnung.
|
|
|
|