matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvendisskusion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Kurvendisskusion
Kurvendisskusion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendisskusion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 03.11.2008
Autor: abi09-.-

Aufgabe
f (x) = ( [mm] x^{2} [/mm] - 2x +1) [mm] e^{x} [/mm]

hallo,
also ich habe bei meiner kurvendiskussion so komische werte raus, das ich einfach mal fragen wollte ob jemand gucken kann was ich falsch gemacht habe... wäre sehr lieb!

ableitungen:
f'(x) = (2x-2) [mm] \* e^{x} [/mm] + [mm] (x^{2}-2x+1) \* e^{x} [/mm]
       = [mm] (-1+x^{2}) \* e^{x} [/mm]
f''(x) = 2x [mm] \* e^{x} [/mm] + [mm] (-1+x^{2}) \* e^{x} [/mm]
        = (2x - 1 + [mm] (x^{2}) \* e^{x} [/mm]

achsenschnittpunkte:
f(0) = [mm] e^{0} [/mm] = 1
[mm] S_{y} [/mm] (0/1)

f(x) = 0 :
( [mm] x^{2} [/mm] - 2x +1) [mm] e^{x} [/mm] = 0
[mm] x^{2} [/mm] - 2x +1 = 0 , da [mm] e^{x} \not= [/mm] 0, für alle x [mm] \in \IR. [/mm]
[mm] S_{x} [/mm] (1/0)

Extrempunkte:

f'(x) = 0 :
[mm] (-1+x^{2}) \* e^{x} [/mm] = 0
[mm] (-1+x^{2}) [/mm] = 0 , da [mm] e^{x} \not= [/mm] 0, für alle x [mm] \in \IR. [/mm]
x=1

f''(1) [mm] \approx [/mm] 5,44 > 0

T (1/0)

Verhalten im Unendlichen:

[mm] \limes_{x\rightarrow\infty}\to\infty [/mm]

[mm] \limes_{x\rightarrow-\infty}\to [/mm] 0,
da [mm] e^{x} [/mm] im Unendlichen das Verhalten bestimmt.

Wendepunkte:

f''(x) = 0 :
(2x - 1 + [mm] x^{2}) \* e^{x} [/mm] = 0
2x - 1 + [mm] x^{2} [/mm] = 0 ; da [mm] e^{x} \not= [/mm] 0, für alle x [mm] \in \IR. [/mm]

[mm] x^{2} [/mm] +2x-1 = 0

x= -1 [mm] \pm \wurzel{2} [/mm]
x [mm] \approx [/mm] 0,414 [mm] \vee [/mm] x [mm] \approx [/mm] -2,414

f(0,414) [mm] \approx [/mm] 0,52

WP (0,414/0,52)

f(-2,414) [mm] \approx [/mm] 1,043

WP (-2,414/1,043)

... irgendwas stimmt da nicht....
hm^^
                    


        
Bezug
Kurvendisskusion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mo 03.11.2008
Autor: steppenhahn

Hallo!

> f (x) = ( [mm]x^{2}[/mm] - 2x +1) [mm]e^{x}[/mm]
>  hallo,
>  also ich habe bei meiner kurvendiskussion so komische
> werte raus, das ich einfach mal fragen wollte ob jemand
> gucken kann was ich falsch gemacht habe... wäre sehr lieb!
>
> ableitungen:
>  f'(x) = (2x-2) [mm]\* e^{x}[/mm] + [mm](x^{2}-2x+1) \* e^{x}[/mm]
> = [mm](-1+x^{2}) \* e^{x}[/mm]

[ok]

> f''(x) = 2x [mm]\* e^{x}[/mm] + [mm](-1+x^{2}) \* e^{x}[/mm]
> = [mm](2x - 1 + x^{2}) * e^{x}[/mm]

[ok]


> achsenschnittpunkte:
>  f(0) = [mm]e^{0}[/mm] = 1
>  [mm]S_{y}[/mm] (0/1)

[ok] Das ist zwar so richtig, aber du solltest nicht f(0) = [mm] e^{0} [/mm] schreiben, weil da kann man als Leser verwirrt werden, sondern lieber einmal ganz ausschreiben oder gleich das Ergebnis hin:

f(0) = [mm] (0^{2}-2*0+1)*e^{0} [/mm] = 1

oder

f(0) = 1

Aber so etwas halbes finde ich nicht so schön - ist aber Ansichtssache, Punktabzug gäbe es nicht.

> f(x) = 0 :
> ( [mm]x^{2}[/mm] - 2x +1) [mm]e^{x}[/mm] = 0
>  [mm]x^{2}[/mm] - 2x +1 = 0 , da [mm]e^{x} \not=[/mm] 0, für alle x [mm]\in \IR.[/mm]
>  
> [mm]S_{x}[/mm] (1/0)

[ok]. Genau. Man könnte eventuell noch erwähnen, dass hier eine doppelte Nullstelle vorliegt, weil die Funktion f(x) = [mm] (x-1)^{\red{2}}*e^{x} [/mm] lautet :-)

> Extrempunkte:
>  
> f'(x) = 0 :
>  [mm](-1+x^{2}) \* e^{x}[/mm] = 0
>  [mm](-1+x^{2})[/mm] = 0 , da [mm]e^{x} \not=[/mm] 0, für alle x [mm]\in \IR.[/mm]
>  
> x=1

[ok] Hier fehlt aber noch eine Lösung! Aus

[mm] x^{2} [/mm] - 1 = 0 [mm] \gdw x^{2} [/mm] = 1

ergibt sich nämlich

x = [mm] \pm [/mm] 1

wegen dem Quadrat! Somit gibt es noch eine weitere Extremstelle zu untersuchen, nämlich -1 !

> f''(1) [mm]\approx[/mm] 5,44 > 0

[ok] Ich weiß zwar nicht, wie ihr das im Unterricht gemacht habt, aber ich finde es schöner und exakter und besser ... wenn man das ausrechnet und es mit e hinschreibt:

f''(1) = 2*e > 0

> T (1/0)

[ok]
Aber: Noch den zweiten Extrempunkt untersuchen!

> Verhalten im Unendlichen:
>  
> [mm]\limes_{x\rightarrow\infty}\to\infty[/mm]

Hier schreibt man ein Gleichheitszeichen!

[mm]\limes_{x\rightarrow\infty} = \infty[/mm]

[mm] \infty [/mm] als Ergebnis ist aber richtig [ok].

> [mm]\limes_{x\rightarrow-\infty}\to[/mm] 0,
>  da [mm]e^{x}[/mm] im Unendlichen das Verhalten bestimmt.

[mm]\limes_{x\rightarrow-\infty} = [/mm] 0

[ok]. Begründung schultechnisch sicher ok.

> Wendepunkte:
>  
> f''(x) = 0 :
>  (2x - 1 + [mm]x^{2}) \* e^{x}[/mm] = 0
>  2x - 1 + [mm]x^{2}[/mm] = 0 ; da [mm]e^{x} \not=[/mm] 0, für alle x [mm]\in \IR.[/mm]
>  
> [mm]x^{2}[/mm] +2x-1 = 0
>  
> x= -1 [mm]\pm \wurzel{2}[/mm]
>  x [mm]\approx[/mm] 0,414 [mm]\vee[/mm] x [mm]\approx[/mm]
> -2,414

Wunderbar [ok]. Bei den nachfolgenden Berechnungen des y-Werts macht es wahrscheinlich wirklich Sinn, die Wurzeln mit durch gerundete Dezimalzahlen zu ersetzen, weil sonst auch nur Kauderwelsch raus kommt :-)

> f(0,414) [mm]\approx[/mm] 0,52
>  
> WP (0,414/0,52)

[ok].
Du brauchst deine Errungenschaften nicht zu verstecken: Schreibe

[mm] f(\sqrt{2}-1) \approx [/mm] 0,52
[mm] WP(\sqrt{2}-1/0,52) [/mm]

:-)

> f(-2,414) [mm]\approx[/mm] 1,043

>  
> WP (-2,414/1,043)
>  
> ... irgendwas stimmt da nicht....
>  hm^^

[ok] Wie oben für die x-Werte ruhig die Wurzeln benutzen. Wieso rundest du hier plötzlich auf 3 Stellen nach dem Komma?

Falsche Bedenken! Alles, was du ausgerechnet hast stimmt! Nur die Extremstelle noch ergänzen :-)

Stefan.

Bezug
                
Bezug
Kurvendisskusion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mo 03.11.2008
Autor: abi09-.-

dankeschön, das war sehr hilfreich xD

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]