matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 19.01.2013
Autor: blck

Aufgabe
[mm] \bruch{x^{3}-7x^{2}+14x-8}{x^{2}-7x+10} [/mm]

Hallo,
ich hab mal eine Frage zur obigen Gleichung. Gibt es eine Möglichkeit hier schneller auf die erste Ableitung zu kommen als folgendes auszurechnen?
[mm] \bruch{((3x^{2}-14x+14)(x^{2}-7x+10))-((2x-7)(x^{3}-7x^{2}+14x-8))}{(x^{2}-7x+10)^{2}} [/mm]
Als Lösung die auch richtig ist, hab ich für die erste Ableitung [mm] \bruch{x^{4}-14x^{3}+65x^{2}-124x+84}{x^{4}-14x^{3}+69x^{2}-140x+100} [/mm] raus. Diese Funktion hat Nullstellen an bei den Werten 2,3 und 7. Von 2 weiß ich, dass es eine hebare Definitionslücke ist. Also brauch ich nur noch die Ergebnisse der zweiten Ableitung für 3 und 7 überprüfen. Nur wenn ich die zweite Ableitung bilde verbrauch ich wieder eine halbe Stunde (so lange hab ich für die erste gebraucht, weil ich mich verrechnet hatte). In einer Klausur würde mir das, das Genick brechen. Deswegen die Frage: Was überseh ich? Kann ich die erste und zweite Ableitung irgendwie schneller bilden?

Vielen Dank im Vorraus,
blck

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Sa 19.01.2013
Autor: notinX

Hallo,

führe erst eine Polynomdivision durch. Dann ist der Term etwas übersichtlicher.

Gruß,

notinX

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 19.01.2013
Autor: blck

Hallo,
danke für die Antwort. Meinst du eine Polynomdivision gleich am Anfang? Sprich aus [mm] \bruch {x^{3}-7x^{2}+14x-8}{x^{2}-7x+10} [/mm] das hier machen [mm] \bruch {(x-2)(x^{2}-5x+4)}{(x-2)(x-5)} [/mm] machen oder soll ich eine Polynomdivision der ersten Ableitung machen?

Gruß,
blck

Bezug
                        
Bezug
Kurvendiskussion: gute Idee
Status: (Antwort) fertig Status 
Datum: 14:28 Sa 19.01.2013
Autor: Loddar

Hallo blck!


Das ist auch eine gute Idee, die Terme in Zähler und Nenner zunächst zu faktorisieren. Nun kannst Du hier auch $(x-2)_$ kürzen, womit sich der Bruch deutlich vereinfacht.

Behalte aber stets im Hinterkopf, dass $x \ = \ 2$ nicht zum Definitionsbereich der Funktion gehört.

Mit dem Restbruch kannst Du nunmehr die MBPolynomdivision durchführen.
Wobei sich der Bruch nunmehr so vereinfacht hat, dass man zum Ableiten auch gleich die MBQuotientenregel anwenden kann.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]