matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Nochmal Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 17.03.2010
Autor: Chizzo

Ich hab jetzt nochmal eine Kurvendiskussion gemacht

[mm] f(x)=0,5x^3-4x^2+8x [/mm]
[mm] f'(x)=1,5x^2-8x+8 [/mm]
f''(x)=3x-8
f'''(x)=3

Habe dann faktorisiert bedeutet x1=0, zweite Nullstelle über pq-Formel errechnet. x2=4.

Dann f'(x) per pq-Formel die Nullstellen rausgefunden x1=4, x2=1,33. Bedeutet an diesen Stellen hab ich Extrema in f(x).

Die Nullstellen von f'(x) dann eingesetzt in f''(x) und dann einmal 4 rausbekommen (Tiefpunkt) und einmal -4,01 rausbekommen (Hochpunkt). Dann nochmal über Vorzeichenwechselkriterium geprüft. Müsste stimmen.

Dann der Wendepunkt. f''(x) hat seine Nullstelle in 2,667. Dieses dann in f(x) eingesetzt und den Punkt (2,667|2,369) als Wendepunkt herausbekommen.

Soweit sollte das alles richtig sein, oder?


Wie untersuche ich jetzt das Monotonieverhalten und das Verhalten des Graphen im Unendlichen? Das kann ich noch gar nicht...

        
Bezug
Kurvendiskussion: Korrektur
Status: (Antwort) fertig Status 
Datum: 14:47 Mi 17.03.2010
Autor: Roadrunner

Hallo Chizzo!


> Ich hab jetzt nochmal eine Kurvendiskussion gemacht
>  
> [mm]f(x)=0,5x^3-4x^2+8x[/mm]
> [mm]f'(x)=1,5x^2-8x+8[/mm]
> f''(x)=3x-8
> f'''(x)=3

[ok]

  

> Habe dann faktorisiert bedeutet x1=0, zweite Nullstelle
> über pq-Formel errechnet. x2=4.

[ok] Aber ruhig erwähnen, dass dies eine doppelte Nullstelle ist!

  

> Dann f'(x) per pq-Formel die Nullstellen rausgefunden x1=4, x2=1,33.

[ok] Schreibe aber besser als Bruch: [mm] $x_2 [/mm] \ = \ [mm] \bruch{4}{3}$ [/mm] .


> Bedeutet an diesen Stellen hab ich Extrema in f(x).

mögliche Extrema!

  

> Die Nullstellen von f'(x) dann eingesetzt in f''(x) und
> dann einmal 4 rausbekommen (Tiefpunkt) und einmal -4,01
> rausbekommen (Hochpunkt).

[ok] Mit dem genauen Bruchwert erhält man auch exakt:
[mm] $$f''(x_2) [/mm] \ = \ [mm] f''\left(\bruch{4}{3}\right) [/mm] \ = \ -4$$

> Dann nochmal über Vorzeichenwechselkriterium geprüft.
> Müsste stimmen.

  

> Dann der Wendepunkt. f''(x) hat seine Nullstelle in 2,667.

[ok] Auch hier wieder als Bruch:  [mm] $x_w [/mm] \ = \ [mm] \bruch{8}{3}$ [/mm] .

Hast Du diesen Wert auch in die 3. Ableitung eingesetzt?


> Dieses dann in f(x) eingesetzt und den Punkt (2,667|2,369)
> als Wendepunkt herausbekommen.

[ok] Bruch!!!

  
Gruß vom
Roadrunner


Bezug
        
Bezug
Kurvendiskussion: Hinweise
Status: (Antwort) fertig Status 
Datum: 14:59 Mi 17.03.2010
Autor: Roadrunner

Hallo Chizzo!


> Wie untersuche ich jetzt das Monotonieverhalten

Betrachte die 1. Ableitung (= Steigungsfunktion). Es gilt:
[mm] $$f'(x)\ge [/mm] 0 \ \ [mm] \Rightarrow [/mm] \ \ \ f \ [mm] \text{monoton steigend}$$ [/mm]
[mm] $$f'(x)\le [/mm] 0 \ \ [mm] \Rightarrow [/mm] \ \ \ f \ [mm] \text{monoton fallend}$$ [/mm]


> und das Verhalten des Graphen im Unendlichen?

Eine ganzrationale Funktion 3. Grades kommt entweder aus [mm] $-\infty$ [/mm] und geht dann für sehr große $x_$ nach [mm] $+\infty$ [/mm] ... oder umgekehrt. Dies hängt vom Vorzeichen des Koeffizienten bei [mm] $x^3$ [/mm] ab.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]