matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Lösen der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:28 Sa 18.04.2009
Autor: Lolle182

Aufgabe
Ein parabelförmiger Krater hat einen Durchmesser von 600 m und eine Tiefe von 180 m. Ein Autohersteller behauptet, seine Jeeps könnten Steigungen von 100% bewältigen und somit aus dem Krater herausgelangen.
Schafft er es? Offensichtlich benötigt man erst einmal eine Funktionsvorschrift für den Krater. Dann benötigt man eine Idee, was eine Steigung von 100% eigendlich bedeutet. Und dann: Was haben Steigungen mit Funktionen zu tun?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de/forum/Kurvendiskussion-571]
Ich schreibe in 2 Tagen eine Mathearbeit! Hilfe!
Ich habe so wenig Ahnung davon, dass ich nichtmal weiß, wie ich an diese Aufgabe gehen soll. Bitte, bitte!! Helft mir und löst diese Aufgabe mit vielen Erläuterungen damit ich es nachvollziehen kann und es verstehe!
Vielen lieben Dank im Vorraus!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 18.04.2009
Autor: Steffi21

Hallo, zeichne dir als Einstieg eine Parabel, lege den Scheitelpunkt in den Koordinatenursprung, jetzt überlege dir, wo sind die 600 m bzw. 180 m zu beschriften, Steffi

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Sa 18.04.2009
Autor: Lolle182

Aufgabe
Frage auf Antwort

Habe ich bereits.. und nun??

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Sa 18.04.2009
Autor: Steffi21

Hallo, du hast eine Funktion der Form [mm] f(x)=a*x^{2}, [/mm] Ziel ist die Bestimmung von a, setze einen bekannten Punkt der Parabel ein und bestimme a, Steffi

Bezug
        
Bezug
Kurvendiskussion: Steigung
Status: (Antwort) fertig Status 
Datum: 20:59 Sa 18.04.2009
Autor: Loddar

Hallo Lolle,

[willkommenmr] !!


Die Steigung eine Funktion wird durch die 1. Ableitung $f'(x)_$ angegeben.

Die Angabe $100 \ [mm] \%$ [/mm] bedeutet einen Höhenzuwachs von $100 \ [mm] \text{m}$ [/mm] auf eine horizontale Länge von $100 \ [mm] \text{m}$ [/mm] . Es gilt hier also:
$$m \ = \ [mm] \tan(\alpha) [/mm] \ = \ [mm] \bruch{100 \ \text{m}}{100 \ \text{m}} [/mm] \ = \ 1{,}00$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]