matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Kurvendiskussion
Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 02.02.2009
Autor: Englein89

Hallo,

ich habe die Funtkion

[mm] 1/2x+\wurzel{3-2x-x^2}+1/2 [/mm]

Ich soll den Definitionsbereich und die Extrema bestimmen.

Aber ich habe schon ein Problem mit dem Definitionsbereich.

Die Wurzel darf nicht 0 werden, also [mm] 3-2x-x^2=0 [/mm] berechnen. Aber wenn ich pq anwende habe ich 1-3 unter der Wurzel.


Und die Ableitung ist mir auch nicht gelungen. Es bleibt 1/2, aber was ist mit der Wurzel? Ich kann sie schreiben als [mm] (3-2x-x^2)^{1/2}, [/mm] dann [mm] 1/2(3-2x-x^2)^{-1/2}, [/mm] aber fehlt da nicht noch was? Wie schreibe ich außerdem diesen Ausdruck wieder als Bruch, damit tu ich mir schwer, wegen des Bruchs vorne und dem Minus im Exponent.

Lieben Dank für die Hilfe!


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 02.02.2009
Autor: Marcel

Hallo,

> Hallo,
>  
> ich habe die Funtkion
>  
> [mm]1/2x+\wurzel{3-2x-x^2}+1/2[/mm]
>  
> Ich soll den Definitionsbereich und die Extrema bestimmen.
>  
> Aber ich habe schon ein Problem mit dem Definitionsbereich.
>
> Die Wurzel darf nicht 0 werden,

doch, sie darf [mm] $\,=\,0$ [/mm] werden, aber der Term unter der Wurzel (Radikand/Wurzelbasis) sollte es tunlichst vermeiden, [mm] $<\,0$ [/mm] zu werden (zumindest, wenn Deine Funktion nach [mm] $\IR$ [/mm] abbilden soll; ansonsten einigt man sich manchmal darauf, [mm] $\sqrt{-x}:=\sqrt{x}*i$ [/mm] ($x > 0$) zu interpretieren).

> also [mm]3-2x-x^2=0[/mm] berechnen.
> Aber wenn ich pq anwende habe ich 1-3 unter der Wurzel.

Wie wendest Du das denn an? Du kannst ja den Term unter der Wurzel $=0$ setzen, und Dir danach überlegen, für genau welche $x [mm] \in \IR$ [/mm] dieser [mm] $\ge [/mm] 0$ ist. Für genau diese $x [mm] \in \IR$ [/mm] ist die Funktion dann definiert.

D.h.
[mm] $$3-2x-x^2=0 \gdw x^2+\underbrace{2}_{=p}x+\underbrace{(-3)}_{=q}=0\,.$$ [/mm]

Mit der [mm] $pq\,-$Formel [/mm] erhälst Du dann [mm] $x_{1,2}=-1\pm \sqrt{1+3}\,,$ [/mm] also [mm] $x_1=1$ [/mm] und [mm] $x_2=-3\,.$ [/mm]

Übrigens: Ist $1/2x$ bei Dir als $(1/2)x$, oder als $1/(2x)$ zu lesen? Entweder bitte Klammern setzen, oder schreibe mit dem Formeleditor [mm] [nomm]$\bruch{1}{2x}$[/nomm] [/mm] bzw. [mm] [nomm]$\frac{1}{2}x$[/nomm], [/mm] dann ist klar, was Du meinst. Offenbar meinst Du aber [mm] $1/2x=\frac{1}{2}x\,,$ [/mm] das entnehme ich den folgenden Überlegungen Deinerseits.
  
Nun musst Du Dir noch überlegen, für genau welche $x [mm] \in \IR$ [/mm] gilt, dass [mm] $3-2x-x^2=-(x^2+2x-3)=-(x-x_1)*(x-x_2)=-(x-1)(x+3) \ge [/mm] 0$ gilt.

> Und die Ableitung ist mir auch nicht gelungen. Es bleibt
> 1/2, aber was ist mit der Wurzel? Ich kann sie schreiben
> als [mm](3-2x-x^2)^{1/2},[/mm] dann [mm]1/2(3-2x-x^2)^{-1/2},[/mm] aber fehlt
> da nicht noch was?

Doch, da fehlt die innere Ableitung (Kettenregel!). Und zwar:
Betrachte [mm] $h(x):=\sqrt{3-2x-x^2}$ [/mm] (auf ihrem größtmöglichen Definitionsbereich [mm] $\subset \IR$). [/mm] Dann gilt mit [mm] $f(g)=\sqrt{g}$ [/mm] und [mm] $g(x):=3-2x-x^2\,,$ [/mm] dass $h=f [mm] \circ g\,,$ [/mm] also nach der Kettenregel

    [mm] $h\!\,'(x)=(f\circ g)\!\,'(x)=(f(g(x)))\!\,'=f\!\,'(g(x))*g\!\,'(x)\,.$ [/mm]

Du hast oben [mm] $f\!\,'(g(x))=\frac{1}{2}(3-2x-x^2)^{-1/2}$ [/mm] stehen, aber Dir fehlt noch [mm] $g\!\,'(x)\,,$ [/mm] was Du da noch dran multiplizieren musst.

> Wie schreibe ich außerdem diesen
> Ausdruck wieder als Bruch, damit tu ich mir schwer, wegen
> des Bruchs vorne und dem Minus im Exponent.

Es gelten (grob, d.h. ohne Erwähnung der genauen Voraussetzungen) die Rechenregeln [mm] $a^{-m}=\frac{1}{a^m}$ [/mm] und [mm] $a^{m/n}=\sqrt[n]{a^m}\,.$ [/mm] Damit ist [mm] $(3-2x-x^2)^{-1/2}=\frac{1}{(3-2x-x^2)^{1/2}}=\frac{1}{\sqrt[2]{3-2x-x^2}}=\frac{1}{\sqrt{3-2x-x^2}}\,.$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]