matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 27.11.2004
Autor: davetheslave

Hi!

Ich soll eine komplette Kurvendiskussion machen. Und zwar mit folgender Funktion:

[mm] u(x) = \bruch{x^3-x^2}{x-1} fuer |x| < 1 und 1 fuer |x| >= 1 [/mm]

Das ganze sieht auf dem Zettel etwas anders aus :) aber ich weiss nicht wie ich diese grosse Klammer hier hinbekomme.

Edit: Ich habe gerade gemerkt, das die Formel total unleserlich ist. Und da ich mir nicht anders zu behelfen weiss, ist hier ein kleines Bildchen:

[]Formel


Und da ist auch genau mein Problem: So wie ich das verstehe solle ich die Funktion einmal für x<1 und einmal für x>=1 untersuchen. Aber was macht das für einen Sinn?

Ich soll also folgendes untersuchen:
1. Definitionsbereich
2. Verhalten an den Definitionslücken
3. Nullstellen
4. lokale und globale Extrempunkte
5. asymptotisches Verhalten im Unendlichen
6. Krümmungsverhalten
7. Monotonieverhalten
8. Symmetrie und Periodizität


Mein Ansatz:
Bei [mm]\bruch{x^3-x^2}{x-1}[/mm] sieht man ja eigentlich schon, das 1 eine Nullstelle ist. Die Definition? sagt aber das x<1 ist, jetzt weiss ich nicht genau ob ich trotzdem mit der Nullstelle arbeiten darf oder nicht?

Weiter würde ich dann durch Polynomdivision die anderen zwei Nullstellen errechnen. Ich glaube das würde ich schaffen, nur habe noch leider keinen Plan was das Krümmungsverhalten ist.

Sorry das es ein paar Sätze mehr geworden sind, aber vielleicht hat ja jemand eine Denkanstoss.

Danke schön!
David


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 27.11.2004
Autor: frabi

Hallo!

Ich denke, dass Du Die Definition falsch verstehst.
Die Funktion wird hier nämlich mit einer Fallunterscheidung definiert:

einmal für alle $|x| < 1$ (d.h. für $-1 < x < 1$). Hier ist
[mm] f(x) = \frac{x^3-x^2}{x-1} [/mm]

und für den restlichen Definitionsbereich (also für $x [mm] \le [/mm] -1$ und $x [mm] \ge [/mm] 1$) ist
$f(x) = 1$.
Das heisst dann wohl auch, dass überhaupt keine Definitionslücken existieren, da
die Funktion ja für jedes $x$ erklärt ist (für $x=1$ trifft ja der untere Fall zu.
Man dividiert also nicht durch Null).


Tipp: Klammere mal [mm] $x^2$ [/mm] im Zähler aus.

viele Grüße
  frabi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]