matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Wendepunkt etc
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 06.02.2007
Autor: KaiTracid

Aufgabe
Diskutieren sie die Funktion : f(x) = [mm] \bruch{x²-2x+2}{x²+1}. [/mm]

Diskussionspunkte: Definitionsbereich, Nullstellen,,Polstellen, Verhalten für /x/ -> [mm] \infty, [/mm] Extremstellen, Art möglicher Extremstellen, Wendepunkt.

Also ich habe folgendes raus:

Definitionsbereich: x [mm] \in \IR [/mm]

Nullstellen: gibt es nicht

Polstellen:keine

/x/-> [mm] \infty: [/mm] f(x) ->1

Extremstellen:

Ableitung:
f´(x) = [mm] \bruch{2x²-2x-2}{(x²+1)²} [/mm]
[mm] f´´(x)=\bruch{-4x^5 + 6x^4 + 8x^3 + 4x² + 12x -2}{(x²+1)^4} [/mm]

TP:  0.38
HP: 2.26

Mein Problem liegt nun beim Wendepunkt!
[mm] -4x^5 [/mm] + [mm] 6x^4 [/mm] + [mm] 8x^3 [/mm] + 4x² + 12x -2 =0
diese gleichung muss ich doch auf x auflösen! nur weis ich nicht wie ich des machen soll?! kann mir da jemand helfen und vllt auch sagen ob der rest so stimmt?

Vielen Dank!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Di 06.02.2007
Autor: Stefan-auchLotti


> Diskutieren sie die Funktion : f(x) =
> [mm]\bruch{x²-2x+2}{x²+1}.[/mm]
>  
> Diskussionspunkte: Definitionsbereich,
> Nullstellen,,Polstellen, Verhalten für /x/ -> [mm]\infty,[/mm]
> Extremstellen, Art möglicher Extremstellen, Wendepunkt.
>  Also ich habe folgendes raus:
>  

[mm] $\bffamily \text{Hi.}$ [/mm]

> Definitionsbereich: x [mm]\in \IR[/mm]
>  

[ok]

> Nullstellen: gibt es nicht
>  

[ok]

> Polstellen:keine
>  

[ok]

> /x/-> [mm]\infty:[/mm] f(x) ->1
>  

[ok]

> Extremstellen:
>
> Ableitung:
>  f´(x) = [mm]\bruch{2x²-2x-2}{(x²+1)²}[/mm]

[ok]

>  [mm]f´´(x)=\bruch{-4x^5 + 6x^4 + 8x^3 + 4x² + 12x -2}{(x²+1)^4}[/mm]
>  

[mm] $\bffamily \text{Du kannst dir eine Menge Ausmultiplizierungsarbeit ersparen, indem du, nachdem du die Quotientenregel ange-}$ [/mm]

[mm] $\bffamily \text{wendet hast, guckst, ob du was wegkürzen kannst.}$ [/mm]

> TP:  0.38
>  HP: 2.26
>  

[notok]

[mm] $\bffamily \text{Da hast du dich bei der }p\text{-}q\text{-Formel/quadratischen Ergänzung wohl ein wenig vertan. Überprüf' noch mal deine Ergebnisse!}$ [/mm]

> Mein Problem liegt nun beim Wendepunkt!
>  [mm]-4x^5[/mm] + [mm]6x^4[/mm] + [mm]8x^3[/mm] + 4x² + 12x -2 =0
>  diese gleichung muss ich doch auf x auflösen! nur weis ich
> nicht wie ich des machen soll?! kann mir da jemand helfen
> und vllt auch sagen ob der rest so stimmt?
>  

[mm] $\bffamily \text{Stichwort: cardanische Formel.}$ [/mm]

[mm] $\bffamily \text{Hier die Ergebnisse (doch ich würde trotzdem versuchen, sie selbst noch mal zu errechnen, als Kontrolle!):}$ [/mm]

[mm] $\bffamily x_{1}=\wurzel{5}*\cos\left(\bruch{\operatorname{arctan}\left(\bruch{1}{3}\right)}{3}+\bruch{\pi}{12}\right)+\bruch{1}{2}\approx [/mm] 0{,}1557915668$

[mm] $\bffamily \vee$ [/mm]

[mm] $\bffamily x_{2}=-\wurzel{5}*\sin\left(\bruch{\operatorname{arctan}\left(\bruch{1}{3}\right)}{3}+\bruch{\pi}{4}\right)+\bruch{1}{2}\approx [/mm] -1{,}241306459$

[mm] $\bffamily \vee$ [/mm]

[mm] $\bffamily x_{3}=-\wurzel{5}*\sin\left(\bruch{\operatorname{arctan}\left(\bruch{1}{2}\right)}{3}\right)+\bruch{1}{2}\approx [/mm] 2{,}585514892$

> Vielen Dank!

[mm] $\bffamily \text{Grüße, Stefan.}$ [/mm]

[mm] $\bffamily \text{PS: Die Formel von Cardano kannst du natürlich nur benutzen, wenn du auf meine vorhin genannte Kürzung eingehst, da sich nur dann eine Gleichung 3. Grades ergibt.}$[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]