matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Sa 08.07.2006
Autor: sali

Aufgabe
Man führe eine kurvendiskussion durch (Definitionsbereich,Symmetrie,Periodizität,Nullstellen,Unstetigkeitsstellen,Verhlten an Grenzen des Def.bereichs,lokale Minima/Maxima,Monotonie-Intervalle, Wendepunkte und Intervalle konvexen und konkarven verhaltens)
f(x) = [mm] xe^{-(x^2)/2} [/mm]

hallo an alle!
ich weiss gar nicht wie ich hier anfangen soll!
Definitionsbereich sind alle reellen Zahlen denk ich, da e^.. ja nicht 0 werden kann, oder?
bitte helft mir, ich weiss auch gar nicht wie man diese ganzen dinge berechnet!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 08.07.2006
Autor: Leni-chan

Also ich hab jetzt erst mal einen Teil der Kurvenuntersuchung fertig. Ich muss zugeben alles weiß ich auch nicht, aber ich versuch mal, dir einige Lösungen zu geben.

[mm] DB={x:x\in R} [/mm]
Wenn du dir die Fkt. mal im GTR anschaust, dann erkennt man, dass der Funktionsgraph in pos. und neg. Richtung unendlich weitergeht.

Symmetrie:
Hier der Ansatz. Für f(x) musst du f(-x) einsetzen. Also [mm] f(-x)=(-x)*e^{-\bruch{(-x)^2}{2}}=-f(x) [/mm]
Wenn f(x)=-f(x) gilt, herrscht Punktsymmetrie des Funktionsgraphen zum Koordinatenursprung vor.

Nullstellen:
f(x)=0 und da [mm] e^{-\bruch{x^{2}}{2}} [/mm] nie 0 sein kann gibt es nur eine Lösung
[mm] x_{n}=0 [/mm]

Extrempunkte:
Da musst du als erstes die 1. und 2. Ableitung bilden
[mm] f'(x)=-e^{-\bruch{x^{2}}{2}}*(x^{2}-1) [/mm]
[mm] f''(x)=e^{-\bruch{x^{2}}{2}}*(x^{3}-3x) [/mm]

notwendige Bedingung:
f'(x)=0
[mm] 0=-e^{-\bruch{x^{2}}{2}}*(x^{2}-1) [/mm]
[mm] 0=x^{2}-1 [/mm] GTR
[mm] x_{e_{1}}=1 [/mm]
[mm] x_{e_{2}}=-1 [/mm]

hinreichende Bedingung:
f''(1)=-1,218 < 0 [mm] \Rightarrow [/mm] lokales Maximum
f''(-1)=1,218 > 0 [mm] \Rightarrow [/mm] lokales Minimum

f(1)=0,607            [mm] P_{max}(1;0,607) [/mm]
f(-1)=-0,607         [mm] P_{min}(-1;-0,607) [/mm]

So ich hoffe das reicht dir erst einmal. Einiges steht auch im Tafelwerk, wenn es um Definitionen geht. Die anderen Dinge, die noch gefordert werden, kann ich dir leider auch nicht beantworten.

LG Leni-chan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]