matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKurven in Parameterdarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Kurven in Parameterdarstellung
Kurven in Parameterdarstellung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurven in Parameterdarstellung: Teilaufgabe Schnittpunkt
Status: (Frage) beantwortet Status 
Datum: 12:04 Di 22.07.2008
Autor: lisa11

Aufgabe
Man berechne den Schnittpunkt der CTR mit der Flugbahn.
Text wie im Beitrag vorher, ich bin 1000 m von der CTR entfernt dies ist die Strecke.

Für die CTR kann ich eine Ebenengleichung aufstellen wie vorher mit
(Ebenengleichung besteht aus Normalenvektor und Punkt)

Geichung für die CTR
y= 1000;

ich nehme die Vektoren mit Fall ohne Wind und Fall mit Wind alleine und
setze es gleich 1000 bekomme folgende Formel:


1000= [mm] \vektor{-25*\sin (\omega*t+\pi/4)\\ 25*\cos(\omega*t+\pi/4)}+\vektor{5*\sin(-0.003*t)\\5*\cos(-0.003*t)} [/mm]

(diese Gleichung brauche ich für den Schnittpunkt)

für [mm] \omega [/mm] nehme ich wieder 0.2

Die Ebene ist der Normalenvektor und der Punkt laut vorhergehender Teilaufgabe und die Ebenengleichung ist somit y= 1000

gruss e.w.



        
Bezug
Kurven in Parameterdarstellung: integrieren; Vorzeichen
Status: (Antwort) fertig Status 
Datum: 15:12 Di 22.07.2008
Autor: Al-Chwarizmi

  
> Geichung für die CTR
>  y= 1000;                          
>  
> ich nehme die Vektoren mit Fall ohne Wind und Fall mit Wind
> alleine und
>  setze es gleich 1000 bekomme folgende Formel:
>  
>
> 1000= [mm]\vektor{-25*\sin (\omega*t+\pi/4)\\ 25*\cos(\omega*t+\pi/4)}+\vektor{5*\sin(-0.003*t)\\5*\cos(-0.003*t)}[/mm]
>  
> (diese Gleichung brauche ich für den Schnittpunkt)

Hier setzt du den Geschwindigkeitsvektor gleich 1000. Das macht keinen Sinn.
Jetzt müsste man zuerst integrieren:

          [mm]\ \vec{r}(t)=\integral_{0}^{t}\left(\vektor{-25*\sin (\omega*t+\pi/4)\\ 25*\cos(\omega*t+\pi/4)}+\vektor{5\cdot{}\sin(\blue{+}0.003\cdot{}t)\\5\cdot{}\cos(\blue{+}0.003\cdot{}t)}\right)\ dt[/mm]

nachher setzt man die y-Komponente von [mm] \vec{r}(t) [/mm] gleich 1000

(die Vorzeichenkorrektur habe ich in einem früheren Beitrag noch angebracht,
um die Drehrichtung des Windes richtig hinzukriegen)
  
Beachte, dass

[mm] \vektor{5\cdot{}\sin(\blue{+}0.003\cdot{}t)\\5\cdot{}\cos(\blue{+}0.003\cdot{}t)} [/mm]

dasselbe ist wie

[mm] \vektor{5\cdot{}\cos(-0.003\cdot{}t+\pi/2)\\5\cdot{}\sin(-0.003\cdot{}t+\pi/2)} [/mm]

>  
> für [mm]\omega[/mm] nehme ich wieder 0.2    [ok]


>  

lg   al-Ch.

Bezug
                
Bezug
Kurven in Parameterdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Di 22.07.2008
Autor: lisa11

gut dann kann ich [mm] \ r(t) [/mm]
schreiben als

[mm] r \vektor{0\\1000\\0}[/mm] = [mm] \integral_{0}^{300} [/mm] ...

(das was ich vorher bekommen habe den Vektor , also den zusammengesetzten Geschwindigkeitsvektor von ohne Wind und mit Wind  als Integral dargestellt.)


so wie ich das jetzt sehe muss man einen Vektor angeben den man mit dem Integral der Geschwindigkeitsvektoren gleichsetzt.

bin noch nicht fertig morgen mache ich noch den Einflugspunkt über Grund
langsam werde ich dann programmieren habe noch nicht angefangen...

gruss e.w.


Bezug
                        
Bezug
Kurven in Parameterdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Di 22.07.2008
Autor: lisa11

die Mitteilung oben sollte eine Frage sein

gruss e.w.

Bezug
                                
Bezug
Kurven in Parameterdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 22.07.2008
Autor: Al-Chwarizmi

O.K.

übrigens könnte man die Integration sehr wohl auch
von Hand durchführen, ohne Hilfsprogramm.

Bezug
                        
Bezug
Kurven in Parameterdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Di 22.07.2008
Autor: Al-Chwarizmi


> gut dann kann ich [mm]\ r(t)[/mm]
>  schreiben als
>  
> [mm]r \vektor{0\\1000\\0}[/mm] = [mm]\integral_{0}^{300}[/mm] ...
>  

als Obergrenze eben nicht 300, sondern vorerst eine Variable  t
(man könnte die Integrationsvariable im Innneren des Integrals
allenfalls durch einen anderen Buchstaben ersetzen)

Ich kenne die Syntax von mupad nicht, aber prinzipiell müsste
es nun etwa so gehen:

v(t):={.... , .... , .... }     (Geschwindigkeitsvektor definieren wie gehabt)

r(t):=Integral[v(u),u,0,t]

y(t):=    (y-Komponente des Vektors r(t))

fsolve[y(t)=1000,t]            (Gleichung nach t auflösen)

r(Lösung t) berechnen    (Punkt, wo Grenze überschritten wird)


Und natürlich die grafische Darstellung der Flugbahn   r(t) für [mm] 0\le [/mm] t [mm] \le [/mm] 300

Dazu eine horizontale Linie bei y=1000, welche die Grenze des CTR darstellt.        

Bezug
                                
Bezug
Kurven in Parameterdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Di 22.07.2008
Autor: lisa11

fsolve[y(t)=1000,t]

Gleichung nach t auflösen da gebe ich doch das Intervall ein von
  0<=t<=300?

gruss e.w.

Bezug
                                        
Bezug
Kurven in Parameterdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Di 22.07.2008
Autor: lisa11

morgen gebe ich die Syntax zu numeric::fsolve() an muss nachsehen


gruss e.w.

Bezug
                                        
Bezug
Kurven in Parameterdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Di 22.07.2008
Autor: Al-Chwarizmi


> fsolve[y(t)=1000,t]
>  
> Gleichung nach t auflösen da gebe ich doch das Intervall
> ein von
> 0<=t<=300?
>  
> gruss e.w.


probier mal so,  es gibt allerdings in diesem Intervall
mehr als eine Lösung und ich weiss nicht, ob fsolve
dann die kleinste, irgendeine oder alle Lösungen sucht


Bezug
                
Bezug
Kurven in Parameterdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Di 22.07.2008
Autor: lisa11

ich habe noch vergessen in mupad muss ich dies mit nurmeric::fsolve ( )
loesen da muss ich aber die Vektoren gleichsetzen beim Programmieren.

gruss e.w.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]