matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenKugeln und Tangentialebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Kugeln und Tangentialebenen
Kugeln und Tangentialebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugeln und Tangentialebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Fr 13.03.2009
Autor: FlECHS

Aufgabe 1
In einem kartesischen Koordinatensystem ist die Kugel K1 gegeben [mm] K_{1}: x^2-6x+y^2-4y+z^2-2z-7=0 [/mm] gegeben!
Die Tangentialebenen lauten:
[mm] t_{1}: [/mm] 2x-y+4z=-13
[mm] t_{2}: [/mm] x+4y-2z=-12

Aufgabe 2
Die Ebene t1 und t2 sind Tangentialebenen weiterer Kugeln [mm] K_{r}. [/mm] Bestimmen Sie die Koordinaten des Mittelpunktes einer solchen Kugel mit dem Radius [mm] \bruch{10}{\wurzel{21}}! [/mm]

Aufgabe 3
Geben Sie die Mittelpunkte [mm] M_{r} [/mm] aller Kugeln in Abhängigkeit vom Radius r an!

Ich habe mir zunächst die Kugelgleichung bestimmt [mm] (x-3)^2+(y-2)^2+(z-1)^2=21 [/mm] .
Zudem habe ich mir die Schnittgerade bestimmt:
[mm] S:x=\vektor{\bruch{-64}{9} \\ \bruch{-11}{9} \\ 0}+u*\vektor{\bruch{-14}{9} \\ \bruch{8}{9}\\1} [/mm]
Und den Winkel unter dem sich die beiden Tangenten schneiden [mm] \alpha=61,56°. [/mm]
Leider weiss ich nicht, wie ich jetzt in dieser Aufgabe weiter vorgehen kann. Ich wühre mich freuen wenn mir bitte jemand weiterhelfen könnte.

        
Bezug
Kugeln und Tangentialebenen: Tipps
Status: (Antwort) fertig Status 
Datum: 19:55 Fr 13.03.2009
Autor: informix

Hallo FlECHS,

> In einem kartesischen Koordinatensystem ist die Kugel K1
> gegeben [mm]K_{1}: x^2-6x+y^2-4y+z^2-2z-7=0[/mm] gegeben!
>  Die Tangentialebenen lauten:
>  [mm]t_{1}:[/mm] 2x-y+4z=-13
>  [mm]t_{2}:[/mm] x+4y-2z=-12

Sind die Tangentialebenen vorgegeben - oder hast du sie selbst berechnet?
Ich kann hier keine Aufgabe erkennen.

>  Die Ebene t1 und t2 sind Tangentialebenen weiterer Kugeln
> [mm]K_{r}.[/mm] Bestimmen Sie die Koordinaten des Mittelpunktes
> einer solchen Kugel mit dem Radius
> [mm]\bruch{10}{\wurzel{21}}![/mm]

>  Geben Sie die Mittelpunkte [mm]M_{r}[/mm] aller Kugeln in
> Abhängigkeit vom Radius r an!

>  Ich habe mir zunächst die Kugelgleichung bestimmt
> [mm](x-3)^2+(y-2)^2+(z-1)^2=21[/mm] .

Das habe ich nicht im einzelnen nachgerechnet, scheint aber ok zu sein.

>  Zudem habe ich mir die Schnittgerade bestimmt:
>  [mm]S:x=\vektor{\bruch{-64}{9} \\ \bruch{-11}{9} \\ 0}+u*\vektor{\bruch{-14}{9} \\ \bruch{8}{9}\\1}[/mm]
>  
> Und den Winkel unter dem sich die beiden Tangenten
> schneiden [mm]\alpha=61,56°.[/mm]
>  Leider weiss ich nicht, wie ich jetzt in dieser Aufgabe
> weiter vorgehen kann. Ich wühre mich freuen wenn mir bitte
> jemand weiterhelfen könnte.

Hast du dir mal in einer Skizze klargemacht, wie weitere Kugeln zu finden sind, die die beiden Ebenen als Tangentialebenen haben?
Denk mal an die Aufgabe, zu zwei sich schneidenden Geraden die Berührkreise zu ermitteln!
[guckstduhier] ähnliche Aufgabe
Du kannst auch selbst googeln: "Tangentialebene site:matheraum.de" eingeben...

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]