matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikKugelkondensator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "HochschulPhysik" - Kugelkondensator
Kugelkondensator < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelkondensator: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:16 Sa 17.05.2014
Autor: xx_xx_xx

Aufgabe
Ein Kugelkondensator besteht aus einer massiven Vollkugel aus Metall mit dem Radius [mm] r_i=5cm [/mm] und einer dünnen Metallhohlkugel mit dem Radius [mm] r_a=6cm. [/mm] Der Zwischenraum sei mit einem Dielektrikum mit Dielektrizitätszahl [mm] \epsilon_r=2 [/mm] gefüllt. Der Kondensator wird mit einer Spannung U=2kV aufgeladen.

a)
Welche Kapazität C hat der Kondensator und welche Ladung [mm] \pm [/mm] Q tragen die Kugeln?
Wie groß sind die Feldstärken [mm] \overrightarrow{E} [/mm] an der inneren und äußeren Kugel?
Wie groß ist die Feldenergie W?
Welchen Wert hat die Kapazität C, wenn [mm] r_a>>r_i=5cm [/mm] gilt?

b)
Der Kondensator aus a) schlägt bei einer kritischen Feldstärke [mm] E_k= [/mm] 30 kV/m durch. Wie groß muss bei festgelegtem Außenradius [mm] r_a=6cm [/mm] der Innenradius [mm] r_i [/mm] gewählt werden, damit eine möglichst hohe Spannung angelegt werden kann? Welchen Wert erreicht sie dann?

Hallo!
Wollte fragen ob ich das mit diesen Formeln berechne:

a) Kapazität: [mm] C=4*\pi*\epsilon_0*\epsilon_r*\bruch{r_i*r_a}{r_a-r_i} [/mm]

   [mm] \Rightarrow C=4*\pi*8.85*10^{-12}\bruch{As}{Vm}*2*\bruch{0.05m*0.06m}{0.06m-0.05m} [/mm] = 6.67*10^(-11) F




   Ladung [mm] \pmQ [/mm]
   [mm] U=\bruch{Q}{4*\pi*\epsilon_0*\epsilon_r}*(\bruch{1}{r_i}-\bruch{1}{r_a}) \gdw [/mm] Q= [mm] \bruch{U*4*\pi*\epsilon_0*\epsilon_r}{(\bruch{1}{r_i}-\bruch{1}{r_a})} [/mm]

   [mm] \Rightarrow Q=\bruch{2000V*4*\pi*8.85*10^(-12) \bruch{As}{Vm}*2}{(\bruch{1}{0.05m}-\bruch{1}{0.06m})} [/mm]    =   1.33*10^(-7) C

    [mm] \Rightarrow Q=\pm1.33*10^{-7} [/mm] C



   Feldstärke
   [mm] E=\bruch{Q}{4*\pi*\epsilon_0*\epsilon_r*r^2} [/mm]
   [mm] \Rightarrow [/mm] Feldstärke innere [mm] Kugel:E_i=\bruch{Q}{4*\pi*\epsilon_0*\epsilon_r*r_i^2} [/mm] = [mm] \bruch{1.33*10^(-7) C}{4*\pi*8.85*10^(-12) \bruch{As}{Vm}*2*(0.05m)^2} [/mm] = 239 182 [mm] \bruch{V}{m} [/mm]

  [mm] \Rightarrow [/mm] Feldstärke äußere [mm] Kugel:E_a=\bruch{Q}{4*\pi*\epsilon_0*\epsilon_r*r_a^2} [/mm] = [mm] \bruch{1.33*10^(-7) C}{4*\pi*8.85*10^(-12) \bruch{As}{Vm}*2*(0.06m)^2} [/mm] = 166 098.61 [mm] \bruch{V}{m} [/mm]


   Feldernergie
   [mm] W=\bruch{1}{2}*C*U^2 [/mm]  =  [mm] \bruch{1}{2}*6.67*10^{-11} F*(2000V)^2 [/mm]  = 1.334*10^(-4) J


     Kapazität bei  [mm] r_a>>r_i=5cm [/mm]

    [mm] C=4*\pi*\epsilon_0*\epsilon_r*\bruch{r_i*r_a}{r_a-r_i} \gdw C=4*\pi*\epsilon_0*\epsilon_r*r_i*\bruch{r_a}{r_a-r_i} [/mm]

     für [mm] r_a \to \infty [/mm] : [mm] \bruch{r_a}{r_a-r_i} \to [/mm] 1

    [mm] \Rightarrow [/mm] bei [mm] r_a>>r_i=5cm [/mm]  :  [mm] C=4*\pi*\epsilon_0*\epsilon_r*r_i [/mm] = 1.11*10^(-11) F


Ist a) soweit richtig?




Bei b) weiß ich nicht wie ich vorgehen muss, da fehlt mir die Idee.. kann mir jemand auf die Sprünge helfen? Wenn ich aus E Q berechne und dann U nach [mm] r_i [/mm] maximiere bekomme ich keine relle Lösung...



Vielen Dank schonmal!!!

        
Bezug
Kugelkondensator: Tipp
Status: (Antwort) fertig Status 
Datum: 13:22 Sa 17.05.2014
Autor: Infinit

Hallo,
die Rechnung zu a) ist in Ordnung. Für die b) brauchst Du den Zusammenhang zwischen der Feldstärke zwischen den beiden Kugeln und der damit verknüpften Spannung.
Für die Feldstärke hast Du die Gleichung ja bereits angegeben:
[mm] E = \bruch{Q}{4 \pi \epsilon_0 \epsilon_r r^2 [/mm] auf einer Kugel, die den Abstand r vom Ursprung besitzt.
Die Feldstärke hat nur eine Komponente in Radiusrichtung und somit ergibt sich als Spannung zwischen zwei Radien der Wert durch das Linienintegral
[mm] u = \int_{r_1}^{r_2} E \, dr [/mm]
Damit solltest Du weiterkommen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Kugelkondensator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 17.05.2014
Autor: xx_xx_xx

Super! Danke!
Das heißt dann doch dass U immer größer wird, je keiner [mm] r_i [/mm] wird, richtig?
Also [mm] r_i \to [/mm] 0.
Dann kann ich ja aber kein konkretes U ausrechnen, sondern nur sagen für  [mm] r_i \to [/mm] 0 : U [mm] \to \infty [/mm]

Sehe ich das richtig?

Vielen Dank!!

Bezug
                        
Bezug
Kugelkondensator: Antwort
Status: (Antwort) fertig Status 
Datum: 00:30 So 18.05.2014
Autor: Event_Horizon

Hallo!

Da ist irgendwo ein Denkfehler drin.

Mit der Durchschlagsfestigkeit ist nicht gemeint, daß das Feld im Durchschnitt den gegebenen Wert nicht überschreiten darf. Statt dessen ist das Feld direkt an der Oberfläche der Innenkugel am höchsten, und darf genau dort den Maximalwert nicht überschreiten.

Ist die Geometrie fest und man erhöht einfach die Spannung, wird man ganz sicher irgendwann den maximalwert erreichen.

Genauso wird irgendwann eine Verkleinerung der Innenkugel wegen dem 1/r² zu einem zu hohen Feldwert führen.

Der Weg besteht darin, die Ladung Q aus Geometrie und Ladung zu berechnen, und das in [mm] \frac{1}{4\pi\varepsilon_r\varepsilon_0}\frac{Q}{r_i^2} [/mm] einzusetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]