matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKugelgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - Kugelgleichungen
Kugelgleichungen < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichungen: Berührpunkte
Status: (Frage) beantwortet Status 
Datum: 18:50 Di 04.07.2006
Autor: rachel_hannah

Aufgabe
Gegeben ist die Kugel [mm] K:(x_{1}-3)²+(x_{2}+1)²+(x_{3}+3)²= [/mm] 25. Bestimmen Sie die Berührpunkte der beiden Tangentialebenen an K, die durch P(-2|14|7) und Q(10|-2|-2) gehen.

Hi, ich sitze schon seit ner ganzen Weile vor der Aufgabe, aber ich finde einfach keinen Ansatz, der mir hilft. Danke schon mal für eure Bemühungen

        
Bezug
Kugelgleichungen: Ansätze?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Di 04.07.2006
Autor: M.Rex


> Gegeben ist die Kugel [mm]K:(x_{1}-3)²+(x_{2}+1)²+(x_{3}+3)²=[/mm]
> 25. Bestimmen Sie die Berührpunkte der beiden
> Tangentialebenen an K, die durch P(-2|14|7) und Q(10|-2|-2)
> gehen.

Hi Rachel,


Folgende Ansatzideen hätte ich "anzubieten"

a)Der Normalenvektor der Ebene ist parallel zum Vektor [mm] \overrightarrow{BM} [/mm] , wobei B der Berührpunkt Ebene-Kugel und M der Mittelpunkt der Kugel ist.
b)Die Länge des Vektors [mm] \overrightarrow{BM} [/mm] entspricht dem Radius der Kugel.
c) Der Normalenvektor der Ebene steht Senkrecht zu [mm] \overrightarrow{PB}, [/mm] es gilt also: [mm] \overrightarrow{PB} [/mm] * [mm] \overrightarrow{BM} [/mm] = 0.

Kannst du damit evtl. weiterarbeiten? Ich bin mir jetzt selber nicht ganz sicher, ob das hilft,(ich hatte ne falsche Lösung) aber mitteilen wollte ich dir das schon.

Marius

Bezug
        
Bezug
Kugelgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 04.07.2006
Autor: riwe

sei [mm] \vec{a}=\vec{b}-\vec{m} [/mm] mit [mm] \vec{b} [/mm] ortsvektor des berührungspunktes und [mm] \vec{m} [/mm] der des mittelpunktes, sowie [mm] \vec{p} [/mm] und [mm] \vec{q} [/mm] die der beiden punkte.
dann hast du [mm] (\vec{p}-\vec{m})\cdot \vec{a}=r^{2}, [/mm] weil P auf der tangentialebene liegt, analoges für Q, und letztlich [mm] \vec{a}^{2}=r^{2}, [/mm] weil B auf der kugel liegt.
aus diesen 3 gleichungen kannst du die komponenten von [mm] \vec{a} [/mm] berechnen und anschließend die koordinaten des/ der berührungspunkte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]