matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKugelgleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Kugelgleichung bestimmen
Kugelgleichung bestimmen < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 15.04.2013
Autor: jambu

Aufgabe
Bestimmen Sie die Gleichung der Kugel mit der Strecke AB mit A(9/-3/5),     B(5/-6/4) als Durchmesser

Hallo, ich komme bei dieser Aufgabe nicht weiter. Ich würde zunnächst den Vektor der Strecke ausrechnen. Das wäre (4/4/-2). Ich weiß jetzt aber nicht wie ich den Mittelpunkt dadurch bestimmen kann.
Kann mir jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kugelgleichung bestimmen: Mittelpunkt
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 15.04.2013
Autor: Loddar

Hallo jambu!


Der Mittelpunkt liegt genau mittig zwischen den beiden gegebenen Punkten.

Berechnen lässt sich dieser Mittelpunkt wie folgt:

[mm]M \ \left( \ x_M \ | \ y_M \ | \ z_M \ \right) \ = \ M \ \left( \ \bruch{x_A+x_B}{2} \ \left| \ \bruch{y_A+y_B}{2} \ \left| \ \bruch{z_A+z_B}{2} \ \right \right \right)[/mm]

Gruß
Loddar

Bezug
                
Bezug
Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mo 15.04.2013
Autor: jambu

Das heißt der Mittelpunkt wäre hier M(1/0/6)?

Bezug
                        
Bezug
Kugelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 15.04.2013
Autor: schachuzipus

Hallo jambu,


> Das heißt der Mittelpunkt wäre hier M(1/0/6)? [notok]

Da hast du dich wohl verrechnet, zeige mal, wie du gerechnet hast ...

Gruß

schachuzipus

Bezug
                                
Bezug
Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 15.04.2013
Autor: jambu

M=(((-1+3):2)/(-2+2):2)/(7+5):2))

Bezug
                                        
Bezug
Kugelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mo 15.04.2013
Autor: reverend

Hallo jambu,

kann es sein, dass Du an mehreren Aufgaben gleichzeitig arbeitest?
 

> M=(((-1+3):2)/(-2+2):2)/(7+5):2))

Diese Zahlen stammen nicht aus der Aufgabe, die Du hier vorgestellt hast. Da waren die Endpunkte der Strecke doch [mm] A=\vektor{9\\-3\\5} [/mm] und [mm] B=\vektor{5\\-6\\4}. [/mm]

Dann liegt der Mittelpunkt bei [mm] \bruch{1}{2}\left(\vektor{9\\-3\\5}+\vektor{5\\-6\\4}\right)=\vektor{7\\-4,5\\4,5} [/mm]

Grüße
reverend

PS: Achte auch ein bisschen genauer darauf, worauf du hier klickst. Es ist schon das zweite Mal, dass Du eine Frage als Mitteilung gestellt hast. Mitteilungen werden hier leicht überlesen. Wenn Du also eine Frage hast, dann produziere auch einen Frageartikel.

Bezug
                                                
Bezug
Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Mo 15.04.2013
Autor: jambu

Oh mann ja, bin in der Zeile verrutscht. Danke. A(-1/-2/7) B(3/2/5). Dank müsste mein Ergebnis jetzt eigentlich stimmen.
Den Radius führ die Gleichung kann ich doch berechnen, indem ich für die X-Werte Punkt A oder B einsetzte??

Bezug
                                                        
Bezug
Kugelgleichung bestimmen: Radius
Status: (Antwort) fertig Status 
Datum: 19:26 Mo 15.04.2013
Autor: Loddar

Hallo jambus!


Der Radius entspricht dem Abstand der gegebenen Punkte A oder B zum Mittelpunkt M.

Du kannst auch den Abstand von A zu B ermitteln; damit ergibt sich dann der Durchmesser der Kugel (= doppelter Radius).


Gruß
Loddar

Bezug
                                                                
Bezug
Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Mo 15.04.2013
Autor: jambu

ok, das ist klar. Allerdings weiß ich leider nicht wie das geht. Benutzte ich dafür eine Abstandsformel oder gibt es einen anderen Trick?

Bezug
                                                                        
Bezug
Kugelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mo 15.04.2013
Autor: leduart

Hallo
den Abstand bestimmt man mit Pythagoras bzw dem Betrag von AB
Gruss leduart

Bezug
                                                                                
Bezug
Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mo 15.04.2013
Autor: jambu

Mist, da kommt bei mir was krummes raus. Kann ich den nicht wenn mir bei einer Kugelgleichung nur der Radius fehlt, einen der angegebenen Punkten in die Gleichung einsetzten?

Bezug
                                                                                        
Bezug
Kugelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 15.04.2013
Autor: fred97


> Mist, da kommt bei mir was krummes raus. Kann ich den nicht
> wenn mir bei einer Kugelgleichung nur der Radius fehlt,
> einen der angegebenen Punkten in die Gleichung einsetzten?

ja,das kannst du

fred


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]