matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieKruskal und Graph
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Graphentheorie" - Kruskal und Graph
Kruskal und Graph < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kruskal und Graph: Ungerichteter Graph
Status: (Frage) beantwortet Status 
Datum: 17:05 So 16.02.2014
Autor: Klass

Aufgabe
Bestimmen Sie den minimalen Baum für einen ungerichteten Graphen mit dem Kruskal Algorithmus. Geben Sie jeweils die Kanten in der Reihenfolge an, in der Sie hinzugefügt bzw. weggelassen worden sind.

Hallo,

ich habe eine allgemeine Frage:

Wenn man die besuchten Kanten angibt, macht man das ja in der Form:

{a,b} oder (a,b), wenn ich aber einen ungerichteten Graphen habe, in welcher Reihenfolge gebe ich dann die Elemente in der Menge an?

(a,b) oder (b,a)? Eigentlich handelt es sich doch um eine Menge, daher ist doch die Reihenfolge der Elemente egal.

Oder?

Danke im Voraus.

        
Bezug
Kruskal und Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 06:26 Mo 17.02.2014
Autor: tobit09

Hallo Klass!


> Wenn man die besuchten Kanten angibt, macht man das ja in
> der Form:
>  
> {a,b} oder (a,b), wenn ich aber einen ungerichteten Graphen
> habe, in welcher Reihenfolge gebe ich dann die Elemente in
> der Menge an?
>  
> (a,b) oder (b,a)? Eigentlich handelt es sich doch um eine
> Menge, daher ist doch die Reihenfolge der Elemente egal.
>  
> Oder?

Die genauen Definitionen von (gerichteten bzw. ungerichteten) Graphen und somit von Kanten sind leider nicht einheitlich. Wie habt ihr einen ungerichteten Graphen formal definiert?

Wenn die Kanten in ungerichteten Graphen bei euch Mengen sind, solltest du Mengenklammern [mm] ($\{$ und $\}$) [/mm] und keine runden Klammern verwenden. [mm] $\{a,b\}$ [/mm] und [mm] $\{b,a\}$ [/mm] bezeichnen die gleiche Menge. Die Reihenfolge ist also in der Tat egal.

Wenn ungerichtete Graphen bei euch spezielle gerichtete Graphen sind, solltest du runde Klammern verwenden. Es gilt zwar [mm] $(a,b)\not=(b,a)$ [/mm] für [mm] $a\not=b$, [/mm] aber für die Notation der Durchführung des Algorithmus' sollte es aus meiner Sicht genügen, eine beliebige der beiden Kanten $(a,b)$ und $(b,a)$ anzugeben.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]