matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKrümmung und Transformationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Krümmung und Transformationen
Krümmung und Transformationen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung und Transformationen: tipp
Status: (Frage) beantwortet Status 
Datum: 13:04 Mo 29.12.2008
Autor: eumel

Aufgabe
Zeige:
- Äquivalente kurven haben vllt bis auf das Vorzeichen in bestimmten Punkten, gleiche Vorzeichen. Orientiertäquivalente Kurven haben gleiche Krümmungen.
-Unter affinen Transform. a(x)=C+A*x gehe [mm] x:I->\IR^2 [/mm] in die transf. Kurve [mm] \overline{x}=a [/mm] o x über.
die Krümmungen hängen wie folgt zusammen:
[mm] \overline{k}(t)=det(A)*\bruch{|x'|^3}{|Ax'|^3}k(t), [/mm] wobei k(t) die Krümmung ist.

guten morgen auch zusammen :)
also bei dem ersten teil habe ich den ansatz gemacht:
x(t) ist meine reg. kurve:
[mm] \overline{x}=x [/mm] o [mm] \gamma [/mm] , [mm] \gamma:I->I' [/mm] Parametertransf.

[mm] \overline{x}(t)' [/mm]  = [mm] x'(\gamma)(t) [/mm] * [mm] \gamma'(t) [/mm]
[mm] \overline{x}(t)'' [/mm] = [mm] x''(\gamma)(t) [/mm] * [mm] \gamma'(t) [/mm] + [mm] \gamma''(t) [/mm] * [mm] x'(\gamma)(t) [/mm]

bis jetz richtig?

mit der frenetschen formel, dass kappa [mm] k(t)=\bruch{det(\overline{x}(t)',\overline{x}(t)'')}{|\overline{x}(t)'|^3} [/mm]

wollt ich versuchen eben die parametertransformationen rauszuhauen:

[mm] \bruch{det\pmat{ x_1'(\gamma(t))\gamma'(t) & x_1''(\gamma(t))\gamma^2(t) + x_1'(\gamma(t))\gamma''(t) \\ x_2'(\gamma(t))\gamma'(t) & x_2''(\gamma(t))\gamma^2(t) + x_2'(\gamma(t))\gamma''(t)} } {|x'(\gamma)(t) * \gamma'(t))|^3} [/mm]

nur so wie ich das eingesetzt und ausgerechnet habe, kommt da [mm] \gamma'(t) (x_1'x_2''-x_2'x_1'') [/mm] / |x'| heraus und hab kein plan, wie ich hierzu argumentieren kann, falls das überhaupt stimmen sollte....


bei dem letzten weiß ich überhaupt nicht, wie ich daran gehen kann....

ich hätte nämlich l:=A*x einfach abgeleitet, in die frenetschen formeln eingesetzt und versucht durch umformungen auf die obige form zu kommen...

ich bedank mich schon einmal für das mühevolle durchlesen^^

lg und guten rutsch in 2 tagen!!
eumel

ps:die frage wurde nur hier gestellt

        
Bezug
Krümmung und Transformationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 30.12.2008
Autor: rainerS

Hallo!

> Zeige:
>  - Äquivalente kurven haben vllt bis auf das Vorzeichen in
> bestimmten Punkten, gleiche Vorzeichen.
> Orientiertäquivalente Kurven haben gleiche Krümmungen.
>  -Unter affinen Transform. a(x)=C+A*x gehe [mm]x:I->\IR^2[/mm] in
> die transf. Kurve [mm]\overline{x}=a[/mm] o x über.
>  die Krümmungen hängen wie folgt zusammen:
>  [mm]\overline{k}(t)=det(A)*\bruch{|x'|^3}{|Ax'|^3}k(t),[/mm] wobei
> k(t) die Krümmung ist.
>  guten morgen auch zusammen :)
>  also bei dem ersten teil habe ich den ansatz gemacht:
>  x(t) ist meine reg. kurve:
>  [mm]\overline{x}=x[/mm] o [mm]\gamma[/mm] , [mm]\gamma:I->I'[/mm] Parametertransf.
>  
> [mm]\overline{x}(t)'[/mm]  = [mm]x'(\gamma)(t)[/mm] * [mm]\gamma'(t)[/mm]
>  [mm]\overline{x}(t)''[/mm] = [mm]x''(\gamma)(t)[/mm] * [mm]\gamma'(t)[/mm] +
> [mm]\gamma''(t)[/mm] * [mm]x'(\gamma)(t)[/mm]
>  
> bis jetz richtig?
>  
> mit der frenetschen formel, dass kappa
> [mm]k(t)=\bruch{det(\overline{x}(t)',\overline{x}(t)'')}{|\overline{x}(t)'|^3}[/mm]
>
> wollt ich versuchen eben die parametertransformationen
> rauszuhauen:
>  
> [mm]\bruch{det\pmat{ x_1'(\gamma(t))\gamma'(t) & x_1''(\gamma(t))\gamma^2(t) + x_1'(\gamma(t))\gamma''(t) \\ x_2'(\gamma(t))\gamma'(t) & x_2''(\gamma(t))\gamma^2(t) + x_2'(\gamma(t))\gamma''(t)} } {|x'(\gamma)(t) * \gamma'(t))|^3}[/mm]
>  
> nur so wie ich das eingesetzt und ausgerechnet habe, kommt
> da [mm]\gamma'(t) (x_1'x_2''-x_2'x_1'')[/mm] / |x'| heraus

Da hast du dich verrechnet, denn es kommt [mm] $\bruch{(x_1'x_2''-x_2'x_1'')}{|x'|^3} [/mm] = [mm] \bruch{\det(x(t)',x(t)'')}{|x(t)'|^3}$ [/mm] heraus.

> bei dem letzten weiß ich überhaupt nicht, wie ich daran
> gehen kann....
>  
> ich hätte nämlich l:=A*x einfach abgeleitet, in die
> frenetschen formeln eingesetzt und versucht durch
> umformungen auf die obige form zu kommen...

Ja, und das ist sogar ganz einfach, denn der Zähler liefert dir den Faktor [mm] $\det(A)$, [/mm] der Rest bleibt stehen.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]