matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikKritische Reglerverstärkung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Regelungstechnik" - Kritische Reglerverstärkung
Kritische Reglerverstärkung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kritische Reglerverstärkung: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 15:27 So 28.03.2010
Autor: bamm

Aufgabe 1
Geg.: Kanonischer Regelkreis
...
1.4 a) Skizzieren Sie das Bode-Diagramm zu [mm] F_0(j \omega) [/mm] in das Diagramm in Anhang 1
b) Ermitteln Sie nun mit Hilfe des Bode-Diagramms die Amplitudenreserve [mm] A_{R,db}, [/mm] die Phasenreserve [mm] \varphi_R [/mm] und die kritische Reglerverstärkung [mm] K_{R,krit} [/mm] des Regelkreises.

Aufgabe 2
1.5 Berechnen Sie die Kreisfrequenz [mm] \omega_{krit} [/mm] der Dauerschwingungen an der Stabilitätsgrenze und die zugehörige kritische Reglerverstärkung [mm] K_{R,krit}. [/mm]  

Hallo,
erstmal kurz zum Verständnis der Aufgabenstellung: Den genauen Regelkreis hab ich jetzt mal weggelassen, da dieser nicht wichtig ist für mein Problem (denke ich zumindest...)
Ich habe ein Problem damit den Unterschied zwischen der kritischen Reglerverstärkung von Aufgabe 1.4b) und der kritischen Reglerverstärkung von Aufgabe 1.5 zu verstehen. Soweit ich das verstanden habe, kommt es ja bei bei der kritischen Reglerverstärkung zu Eigenschwingungen, was ja auch in Aufgabe 1.5 so erwähnt wird. Was ist also der Unterschied zwischen der krit. Reglerverstärkung in 1.4b) und der in 1.5?
Die Lösungen zu diesen beiden Aufgaben sind mir auch bekannt, hier mal in Kurzform, mir hilft das bei meinem Verständnisproblem allerdings nicht so recht weiter:

von Aufgabe 1.3 kommt noch als Lösung
[mm] F_0 [/mm] = [mm] \bruch{8}{s (s+4)^2} [/mm]

1.4 b) [mm] A_{R,dB} [/mm] = 16dB; [mm] \varphi_R [/mm] = 90°; [mm] K_{R,krit} [/mm] = [mm] K_R \cdot A_R [/mm] = 8 [mm] \cdot 10^{\bruch{16}{20}} [/mm] = 50,5

1.5 [mm] arg\left\{F_0({j \omega_{krit}})\right\} [/mm] = - [mm] \bruch{\pi}{2} [/mm] - 2 [mm] \cdot [/mm] arctan(0,25 [mm] \omega_{krit}) \begin{matrix} ! \\ = \end{matrix} [/mm] - [mm] \pi \Rightarrow w_{krit} [/mm] = 4
[mm] \left|F_0(j \omega_{krit}, K_{R,krit})\right| [/mm] = [mm] \left|\bruch{K_{R,krit}}{j \omega_{krit} (j \omega_{krit} + 4)^2}\right| [/mm] = [mm] \bruch{K_{R,krit}}{4 (4^2 + 4^2)} \begin{matrix} ! \\ = \end{matrix} [/mm] 1 [mm] \Rightarrow K_{R,krit} [/mm] = 128

        
Bezug
Kritische Reglerverstärkung: Zwei Schreibweisen
Status: (Antwort) fertig Status 
Datum: 17:01 Di 30.03.2010
Autor: Infinit

Halo bamm,
aus meiner Sicht gibt es keinen Unterschied in der Betrachtung der kritischen Reglerverstärkung, es ist nur eine Frage der Schreibweise, wie man was ausdrückt.
Die kritische Verstärkung ist dann erreicht, wenn das rückgekoppelte Signal gerade eine Amplitude von 1 erreicht, denn dann wird durch das Minuszeichen am Eingang des Regelkreises die eigentlich gewünschte Gegenkopplung zu einer Mitkopplung. Jetzt kann man diesen Amplitudenfaktor als eine Größe auffassen, so wie es in der Rechnung für 1.5 gemacht wurde oder, wie es bei 1.4 passierte, man teilt diesen Gesamtterm in zwei Faktoren auf. Das Bode-Diagramm wurde augenscheinlich aufgezeichnet für die Funktion
$$ F(s) = [mm] \bruch{1}{s (s+4)^2} [/mm] $$ und hieraus liest man die Amplitudenreserve von 16 dB ab. Nun muss man noch den konstanten Verstärkungsfaktor von 8 berücksichtigen und so kommt man zu Deinem Ausdruck für [mm] K_{R,krit} [/mm], wie Du ihn in der Lösung für 1.4 findest.
Viele Grüße,
Infinit  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]